Skip to main content

The Role of Potassium Ions in the Control of Heart Function

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 143 Accesses

Abstract

The rhythmic contractions of the heart are controlled by periodic changes of the membrane potential (Em) of cardiac myocytes, called action potentials. The cardiac action potential consists of five phases. Phase 0, which lasts only a few milliseconds, is the time of rapid depolarization. A short and small repolarization (phase 1) is followed by a long (about 100 to 400 ms) plateau at a depolarized level (phase 2). The repolarization of the plateau potential is called phase 3. The final phase 4 continues to the next rapid depolarization. The action potential is the result of a concerted action of inward (depolarizing) and outward (hyperpolar-izing) ionic currents. The outward component is carried by K+ ions through potassium-permeable transmembrane proteins, the potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisner DA. The Na-K pump in cardiac muscle. In: Fozzard HM, ed. The Heart and Cardiovascular System. New York: Raven Press; 1986:489–507.

    Google Scholar 

  2. Walker JL. Intracellular inorganic ions in cardiac tissue. In: Fozzard HM, ed. The Heart and Cardiovascular System. New York: Raven Press; 1986:561–572.

    Google Scholar 

  3. Fozzard HA, Arnsdorf MF. Cardiac electrophysiology. In: Fozzard HM, ed. The Heart and Cardiovascular System. New York: Raven Press; 1986:1–30.

    Google Scholar 

  4. Giles W, Shibata EF. Voltage clamp of bullfrog cardiac pacemaker cells: A quantitative analysis of potassium currents. J Physiol (Lond) 1985; 368:265–292.

    CAS  Google Scholar 

  5. Irisawa H, Hagiwara N. Pacemaker mechanisms of mammalian sinoatrial node cells. Prog Clin Biol Res 1988; 257:33–52.

    Google Scholar 

  6. Belardinelli L. Modulation of atrioventricular transmission by adenosine. Prog Clin Biol Res 1987; 230:109–118.

    PubMed  CAS  Google Scholar 

  7. Nishimura M, Habuchi Y, Hiromasa S, Watanabe Y. Ionic basis of depressed automaticity and conduction by acetylcholine in rabbit AV node. Am J Physiol 1988; 255.H7–H14.

    PubMed  CAS  Google Scholar 

  8. Beuckelmann DJ, Wier WG. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol (Lond) 1988; 405:233–255.

    CAS  Google Scholar 

  9. Egan TM, Noble D, Noble SJ, Powell T, Spindler AJ, Twist VW. Sodium-calcium exchange during the action potential in guinea-pig ventricular cells. J Physiol (Lond) 1989; 411:639–661.

    CAS  Google Scholar 

  10. Gibbons WR. Cellular control of cardiac contraction. In: Fozzard HM, ed. The Heart and Cardiovascular System. New York: Raven Press; 1986:747–778.

    Google Scholar 

  11. Näbauer M, Callewaert G, Cleemann L, Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 1989; 244:800–803.

    Article  PubMed  Google Scholar 

  12. Winegrad S. Membrane control of force generation. In: Fozzard HM, ed. The Heart and Cardiovascular System. New York: Raven Press; 1986:703–730.

    Google Scholar 

  13. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 1981; 319:85–100.

    Google Scholar 

  14. Tamkun MM, Knoth KM, Walbridge JA, Kroemer H. Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J 1991; 5:331–337.

    PubMed  CAS  Google Scholar 

  15. Trübe G. Enzymatic dispersion of heart and other tissues. In: Sakmann B, Neher E, eds. Single Channel Recording. New York: Plenum; 1983:69–76.

    Google Scholar 

  16. Adams DJ, Nonner W. Voltage-dependent potassium channels: Gating, ion permeation and block. In: Cook NS, ed. Potassium Channels: Structure, Classification, Function and Therapeutic Potential. Chichester: Ellis Horwood; 1990:40–69.

    Google Scholar 

  17. Kolb HA. Potassium channels in excitable and non-excitable cells. Rev Physiol Biochem Pharmacol 1990; 115:51–91.

    Article  PubMed  CAS  Google Scholar 

  18. Carmeliet E. K+ channels in cardiac cells: Mechanism of activation, inac-tivation, rectification and K+ e sensitivity. Pfluegers Arch 1989; 414:88–92.

    Article  Google Scholar 

  19. Noble D, Tsien RW. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol (Lond) 1969; 200:205–231.

    CAS  Google Scholar 

  20. Cohen IS, Datyner NB, Gintant GA, Kline RP. Time-dependent outward currents in the heart. In: Fozzard HM, ed. The heart and Cardiovascular System. New York: Raven Press; 1986:637–669.

    Google Scholar 

  21. Matsuura H, Ehara T, Imoto Y. An analysis of the delayed outward current in single ventricular cells of the guinea-pig. Pfluegers Arch 1987; 410: 596–603.

    Article  CAS  Google Scholar 

  22. Arena JP, Walsh KB, Kass RS. Measurement, block, and modulation of potassium channel currents in the heart. In: Cook NS, ed. Potassium Channels: Structure, Classification, Function and Therapeutic Potential. Chichester: Ellis Horwood; 1990:43–63.

    Google Scholar 

  23. Duchatelle-Gourdon I, Hartzell HC. Single delayed rectifier channels in frog atrial cells: Effect of ß-adrenergic Stimulation. Biophysic J 1990; 57:903–909.

    Article  CAS  Google Scholar 

  24. Furukawa T, Tsujimura Y, Kitamura K, Tanaka H, Habuchi Y. Time- and voltage-dependent block of the delayed K+ current by quinidine in rabbit sinoatrial and atrioventricular nodes. J Pharmacol Exp Ther 1989; 251:756–763.

    PubMed  CAS  Google Scholar 

  25. Giles W, Nakajima T, Ono K, Shibata EF. Modulation of the delayed rectifier K+ current by isoprenaline in bull-frog atrial myocytes. J Physiol (Lond) 1989; 415:233–249.

    CAS  Google Scholar 

  26. Horie M, Hayashi S, Kawai Ch. Two types of delayed rectifying K+ channels in atrial cells of guinea pig heart. Jap J Physiol 1990; 40:479–490.

    Article  CAS  Google Scholar 

  27. Nakayama T, Kurachi Y, Noma A, Irisawa H. Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pfluegers Arch 1984; 402:248–257.

    Article  CAS  Google Scholar 

  28. Walsh KB, Begenisich TB, Kass RS. ß-Adrenergic modulation of cardiac ion channels: Differential temperature sensitivity of potassium and calcium currents. J Gen Physiol 1989; 93:841–854.

    Article  PubMed  CAS  Google Scholar 

  29. Apkon M, Nerbonne JM. Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 1991; 97:973–1011.

    Article  PubMed  CAS  Google Scholar 

  30. Clapham DE, Logothesis DE. Delayed rectifier K+ current in embryonic chick heart ventricle. Am J Physiol 1988; 254:H192–H197.

    PubMed  CAS  Google Scholar 

  31. Folander K, Smith JS, Antanavage J, Bennett C, Stein RB, Swanson R. Cloning and expression of the delayed-rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. Proc Natl Acad Sei USA 1990; 87:2975–2979.

    Article  CAS  Google Scholar 

  32. Clay JR, Hill CE, Roitman D, Shrier A. Repolarization current in embryonic chick atrial heart cells. J Physiol (Lond) 1988; 403:525–537.

    CAS  Google Scholar 

  33. Tarr M, Trank JW, Goertz KK. Intracellular magnesium affects IK in single frog atrial cells. Am J Physiol 1989; 257:H1663–H1669.

    PubMed  CAS  Google Scholar 

  34. Baiser JR, Bennett PB, Roden DM. Time-dependent outward current in guinea pig ventricular myocytes: Gating kinetics of the delayed rectifier. J Gen Physiol 1990; 96:835–863.

    Article  Google Scholar 

  35. Shibasaki T. Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol (Lond) 1987; 387:227–250.

    CAS  Google Scholar 

  36. Boyle WA, Nerbonne JM. A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes. Am J Physiol 1991; 260:H1236–H1247.

    PubMed  CAS  Google Scholar 

  37. Hume J, Uehara A, Hadley RW, Harvey AL. Comparison of K+ channels in mammalian atrial and ventricular myocytes. In: Cook NS, ed. Potassium Channels: Structure, Classification, Function and Therapeutic Potential. Chichester: Ellis Horwood; 1990:17–41.

    Google Scholar 

  38. Mazzanti M, DeFelice LJ. K channel kinetics during the spontaneous heart beat in embryonic chick ventricle cells. Biophys J 1988; 54:1139–1148.

    Article  PubMed  CAS  Google Scholar 

  39. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current: Differential sensitivity to block by Class III antiarrhythmic agents. J Gen Physiol 1990; 96:195–215.

    Article  PubMed  CAS  Google Scholar 

  40. Walsh KB, Arena JP, Kwok WM, Freeman L, Kass RS. Delayed-rectifier potassium channel activity in isolated membrane patches of guinea pig ventricular myocytes. Am J Physiol 1991; 260:H1390–H1393.

    PubMed  CAS  Google Scholar 

  41. Duchatelle-Gourdon I, Hartzell HC, Lagrutta AA. Modulation of the delayed rectifier potassium current in frog cardiomyocytes by beta-adrenergic agonists and magnesium. J Physiol (Lond) 1989; 415:251–274.

    CAS  Google Scholar 

  42. Bennett PB, Begenisich TB. Catecholamines modulate the delayed rectifying potassium current (IK) in guinea pig ventricular myocytes. Pfluegers Arch 1987; 410:217–219.

    Article  CAS  Google Scholar 

  43. Bennett PB, Kass RS, Begenisich TB. Nonstationary fluctuation analysis of the delayed rectifier K channel in cardiac Purkinje fibers: Actions of norepinephrine on single-channel current. Biophysic J 1989; 55:731–738.

    Article  CAS  Google Scholar 

  44. Tohse N, Kameyama M, Irisawa H. Intracellular Ca2+ and protein kinase C modulate K+ current in guinea pig heart cells. Am J Physiol 1987; 253:H1321–H1324.

    PubMed  CAS  Google Scholar 

  45. Tohse N, Kameyama M, Sekiguchi K, Shearman MS, Kanno M. Protein kinase C activation enhances the delayed rectifier potassium current in guinea-pig heart cells. J Mol Cell Cardiol 1990; 22:725–734.

    Article  PubMed  CAS  Google Scholar 

  46. Walsh KB, Kass RS. Regulation of a heart potassium channel by protein kinase A and C. Science 1988; 242:67–69.

    Article  PubMed  CAS  Google Scholar 

  47. Carmeliet E, Mubagwa K. Changes by acetylcholine of membrane currents in rabbit cardiac Purkinje fibres. J Physiol (Lond) 1986; 371:201–217.

    CAS  Google Scholar 

  48. Yazawa K, Kameyama M. Mechanism of receptor-mediated modulation of the delayed outward potassium current in guinea-pig ventricular myocytes. J Physiol (Lond) 1990; 421:135–150.

    CAS  Google Scholar 

  49. Chandy KG, Williams CB, Spencer RH, Aguilar BA, Ghanshani S, Tempel BL, Gutman GA. A family of three mouse potassium channel genes with intronless coding regions. Science 1990; 247:973–975.

    Article  PubMed  CAS  Google Scholar 

  50. Miller C. 1990: Annus mirabilis of potassium channels. Science 1991; 252:1092–1096.

    Article  CAS  Google Scholar 

  51. Pongs O. Molecular basis of potassium channel diversity. Pfluegers Arch 1989; 414:71–75.

    Article  Google Scholar 

  52. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 1989; 8:3235–3244.

    PubMed  Google Scholar 

  53. Cook NS. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sei 1988; 9:21–28.

    Article  CAS  Google Scholar 

  54. Woosley RL. Antiarrhythmic drugs. Ann Rev Pharmacol Toxicol 1991; 31:427–455.

    Article  CAS  Google Scholar 

  55. Arena JP, Kass RS. Block of heart potassium channels by clofilium and its tertiary analogs: Relationship between drug structure and type of channel blocked. Mol Pharmacol 1988; 34:60–66.

    PubMed  CAS  Google Scholar 

  56. Baiser JR, Hondeghem LM, RodenDM. Amiodarone reduces time dependent IK activation. Circulation 1987; 76:IV-151. Abstract.

    Google Scholar 

  57. Carmeliet E. Electrophysiologic and voltage clamp analysis of the effects of solatol on isolated cardiac muscle and Purkinje fibers. J Pharmacol Exp Ther 1985; 232:817–825.

    PubMed  CAS  Google Scholar 

  58. Colatsky TJ, Follmer CH, Starmer CF. Channel specificity in antiarrhythmic drug action: Mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation 1990; 82:2235–2242.

    Article  PubMed  CAS  Google Scholar 

  59. Rials SJ, Friehling TD, Marinchak RA, Kowey PR. Potassium channels in cardiac arrhythmias: Focus on antiarrhythmic drug action. Prog Clin Biol Res 1990; 334:111–121.

    PubMed  CAS  Google Scholar 

  60. Sanguinetti MC, Jurkiewicz NK. Lanthanum blocks a specific component of IK and screens membrane surface charge in cardiac cells. Am J Physiol 1990; 259:H1881–H1889.

    PubMed  CAS  Google Scholar 

  61. Sanguinetti MC, Jurkiewicz NK. Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells. Am J Physiol 1991; 260:H393–H399.

    PubMed  CAS  Google Scholar 

  62. Sanguinetti MC, Jurkiewicz NK, Scott AL, Siegl PKS. Isoproterenol antagonizes prolongation of refractory period by the Class III antiarrhythmic agent E-4031 in guinea pig myocytes: Mechanism of action. Circ Res 1991; 68:77–84.

    PubMed  CAS  Google Scholar 

  63. Reichardt B, Konzen G, Hauswirth O. Pirmenol, a new antiarrhythmic drug with potassium- and sodium-channel blocking activity: A voltage-clamp study in rabbit Purkinje fibres. Naunyn-Schmiedeberg’s Arch Pharmacol 1990; 341:462–471.

    CAS  Google Scholar 

  64. Roden DM, Bennett PB, Snyders DJ, Baiser JR, Hondeghem LM. Quinidine delays IK activation in guinea pig ventricular myocytes. Circ Res 1988; 62:1055–1058.

    PubMed  CAS  Google Scholar 

  65. Kurachi Y. Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol (Lond) 1985; 366:365–385.

    CAS  Google Scholar 

  66. Ishihara K, Mitsuiye T, Noma A, Takano M. The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. J Physiol (Lond) 1989; 419:297–320.

    CAS  Google Scholar 

  67. Matsuda H. Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. J Physiol (Lond) 1988; 397:237–258.

    CAS  Google Scholar 

  68. Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 1987; 325:156–159.

    Article  PubMed  CAS  Google Scholar 

  69. Vandenberg CA. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sei USA 1987; 84:2560–2564.

    Article  CAS  Google Scholar 

  70. Mazzanti M, DeFelice LJ. Ca modulates outward current through IK1 channels. J Membr Biol 1990; 116:41–45.

    Article  PubMed  CAS  Google Scholar 

  71. Mazzanti M, DiFrancesco D. Intracellular Ca modulates K-inward rectification in cardiac myocytes. Pfluegers Arch 1989; 413:322–324.

    Article  CAS  Google Scholar 

  72. Biermans G, Vereecke J, Carmeliet E. The mechanism of the inactivation of the inward-rectifying K current during hyperpolarizing steps in guinea-pig ventricular myocytes. Pfluegers Arch 1987; 410:604–613.

    Article  CAS  Google Scholar 

  73. Clark RB, Nakajima T, Giles W, Kanai K, Momose Y, Szabo G. Two distinct types of inwardly rectifying K+ channels in bull-frog atrial myocytes. J Physiol (Lond) 1990; 424:229–251.

    CAS  Google Scholar 

  74. Heidbüchel H, Vereecke J, Callewaert G, Carmeliet E. Three different potassium channels in human atrium. Circ Res 1990; 66:1277–1286.

    PubMed  Google Scholar 

  75. Hume JR, Uehara A. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol (Lond) 1985; 368:525–544.

    CAS  Google Scholar 

  76. Matsuda H, Matsuura H, Noma A. Triple-barrel structure of inwardly rectifying K+ channels revealed by Cs+ and Rb+ block in guinea-pig heart cells. J Physiol (Lond) 1989; 413:139–157.

    CAS  Google Scholar 

  77. Sakmann B, Trübe G. Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol (Lond) 1984; 347:659–683.

    CAS  Google Scholar 

  78. Trübe G, Hescheler J. Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pfluegers Arch 1984; 401:178–184.

    Article  Google Scholar 

  79. Wahler GM, Coyle DE, Sperelakis N. Effects of platelet-activating factor on single potassium channel currents in guinea pig ventricular myocytes. Molec Cell Biochem 1990; 93:69–76.

    Article  PubMed  CAS  Google Scholar 

  80. DeHaan RL, Satin J. The role of local cues in physiological differentiation of the embryonic heart: Ion channel development. In: Robert R, Schneider M, eds. Molecular Biology of the Cardiovascular System. New York: Alan R. Liss; 1990:73–98.

    Google Scholar 

  81. Josephson IR, Sperelakis N. Developmental increases in the inward-rectifying K+ current of embryonic chick ventricular myocytes. Biochim Biophys Acta 1990; 1052:123–127.

    Article  PubMed  CAS  Google Scholar 

  82. Kell MJ, DeFelice LJ. Surface charge near the cardiac inward-rectifier channel measured from single-channel conductance. J Membr Biol 1988; 102:1–10.

    Article  PubMed  CAS  Google Scholar 

  83. Stanfield PR. Intracellular Mg2+ may act as a co-factor in ion channel function. Trends Neurosci 1988; 11:475–477.

    Article  PubMed  CAS  Google Scholar 

  84. Kleiman RB, Houser SR. Outward currents in hypertrophied feline ventricular myocytes. Prog Clin Biol Res 1990; 334:65–83.

    PubMed  CAS  Google Scholar 

  85. Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Cardiovasc Pharmacol 1988; 405:123–145.

    CAS  Google Scholar 

  86. Burnashev NA, Edwards FA, Verkhratsky AN. Patch-clamp recording on rat cardiac muscle slices. Pfluegers Arch 1990; 417:123–125.

    Article  CAS  Google Scholar 

  87. Sakmann B, Trübe G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol (Lond) 1984; 347:641–657.

    CAS  Google Scholar 

  88. Baiser JR, Roden DM, Bennett PB. Single inward rectifier potassium channels in guinea pig ventricular myocytes: Effects of quinidine. Biophysic J 1991; 59:150–161.

    Article  Google Scholar 

  89. Carmeliet E, Mubagwa K. Characterization of the acetylcholine-induced potassium current in rabbit cardiac Purkinje fibres. J Physiol (Lond) 1986; 371:219–237.

    CAS  Google Scholar 

  90. Delmar M, Jalife J. Low Ba-induced pacemaker current in well-polarized cat papillary muscle. Am J Physiol 1987; 252:H258–H268.

    PubMed  CAS  Google Scholar 

  91. Harvey RD, Ten Eick RE. Voltage-dependent block of cardiac inward-rectifying potassium current by monovalent cations. J Gen Physiol 1989; 94:349–361.

    Article  PubMed  CAS  Google Scholar 

  92. Hirano Y, Hiraoka M. Changes in K+ currents induced by Ba2+ in guinea pig ventricular muscle. Am J Physiol 1986; 251:H24–H33.

    PubMed  CAS  Google Scholar 

  93. Imoto Y, Ehara T, Matsuura H. Voltage- and time-dependent block of IKi underlying Ba2+-induced ventricular automaticity. Am J Physiol 1987; 252:H325–H333.

    PubMed  CAS  Google Scholar 

  94. Isenberg G. Cardiac Purkinje fibers: Cesium as a tool to block inward rectifying potassium currents. Pfluegers Arch 1976; 365:99–106.

    Article  CAS  Google Scholar 

  95. Kilborn MJ, Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol (Lond) 1990; 430:37–60.

    CAS  Google Scholar 

  96. Tourneur Y, Mitra RL, Morad M, Rougier O. Activation properties of the inward-rectifying potassium channel on mammalian heart cells. J Membr Biol 1987; 97:127–135.

    Article  PubMed  CAS  Google Scholar 

  97. Sato R, Hisatome I, Singer DH. Amiodarone blocks the inward-rectifier K+ channel in guinea-pig ventricular myocytes. Circulation 1987; 76:IV-150. Abstract.

    Google Scholar 

  98. Benndorf K, Nilius B. Different blocking effects of Cd++ and Hg++ on the early outward current in myocardial mouse cells. Gen Physiol Biophys 1988; 7:345–452.

    PubMed  CAS  Google Scholar 

  99. Giles WR, van Ginneken ACG. A transient outward current in isolated cells from the crista terminalis of rabbit heart. J Physiol (Lond) 1985; 368:243–264.

    CAS  Google Scholar 

  100. Hiraoka M, Kawano S. Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes. J Physiol (Lond) 1989; 410:187–212.

    CAS  Google Scholar 

  101. Josephson IR, Sanchez-Chapula J, Brown AM. Early outward current in rat single ventricular cells. Circ Res 1984; 54:157–162.

    PubMed  CAS  Google Scholar 

  102. Nakayama T, Irisawa H. Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits. Circ Res 1985; 57:65–73.

    PubMed  CAS  Google Scholar 

  103. Simurda J, Simurdova M, Cupera P. 4-aminopyridine sensitive transient outward current in dog ventricular fibres. Pfluegers Arch 1988; 411:442–449.

    Article  CAS  Google Scholar 

  104. Tseng GN, Hoffman BF. Two components of myocytes. Circ Res 1989; 64:633–647.

    PubMed  CAS  Google Scholar 

  105. Tseng-Crank JL, Tseng GN, Schwartz A, Tanouye MA. Molecular cloning and functional expression of a potassium channel cDNA isolated from a rat cardiac library. FEBS Lett 1990; 268:63–68.

    Article  PubMed  CAS  Google Scholar 

  106. Coraboeuf E, Carmeliet E. Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pfluegers Arch 1982; 392:352–359.

    Article  CAS  Google Scholar 

  107. Escande D, Coulombe A, Faivre JF, Deroubaix E, Coraboeuf E. Two types of transient outward currents in adult human atrial cells. Am J Physiol 1987; 252:H142–H148.

    PubMed  CAS  Google Scholar 

  108. Nakayama T, Fozzard HA. Adrenergic modulation of the transient outward current in isolated canine Purkinje cells. Circ Res 1988; 62:162–172.

    PubMed  CAS  Google Scholar 

  109. Shibata EF, Drury T, Refsum H, Aldrete V, Giles W. Contributions of a transient outward current to repolarization in human atrium. Am J Physiol 1989; 257:H1773–H1781.

    PubMed  CAS  Google Scholar 

  110. Benndorf K. Three types of single K channels contribute to the transient outward current in myocardial mouse cells. Biomed Biochim Acta 1988; 47:401–416.

    PubMed  CAS  Google Scholar 

  111. Benndorf K, Markwardt F, Nilius B. Two types of transient outward currents in cardiac ventricular cells of mice. Pfluegers Arch 1987; 409:641–643.

    Article  CAS  Google Scholar 

  112. Carmeliet E, Biermans G, Callewaert G, Vereecke J. Potassium current in cardiac cells. Experientia 1987; 43:1175–1184.

    Article  PubMed  CAS  Google Scholar 

  113. Josephson IR, Sperelakis N. Two types of outward K+ channel currents in early embryonic chick ventricular myocytes. J Dev Physiol 1989; 12:201–207.

    PubMed  CAS  Google Scholar 

  114. Kenyon JL, Gibbons WR. Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 1979; 73:117–138.

    Article  PubMed  CAS  Google Scholar 

  115. Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol (Lond) 1991; 442:191–209.

    CAS  Google Scholar 

  116. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 1990; 67:1287–1291.

    PubMed  CAS  Google Scholar 

  117. Litovsky SH, Antzelvitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 1988; 62:116–126.

    PubMed  CAS  Google Scholar 

  118. Apkon M, Nerbonne JM. α1 agonists selectively suppress voltage-dependent K+ currents in rat ventricular myocytes. Proc Natl Acad Sei USA 1988; 85:8756–8760.

    Article  CAS  Google Scholar 

  119. Fedida D, Shimoni Y, Giles W. α-Adrenergic modulation of the transient outward current in rabbit atrial myocytes. J Physiol (Lond) 1990; 423:257–277.

    CAS  Google Scholar 

  120. Tseng GN, Robinson RB, Hoffman BF. Passive properties and membrane currents of canine ventricular myocytes. J Gen Physiol 1987; 90:671–701.

    Article  PubMed  CAS  Google Scholar 

  121. Castle NA. Bupivacaine inhibits the transient outward K+ current but not the inward rectifier in rat ventricular myocytes. J Pharmacol Exp Ther 1990; 255:1038–1046.

    PubMed  CAS  Google Scholar 

  122. Siegelbaum SA, Tsien RW, Kass EN. Role of intracellular calcium in the transient outward current of calf Purkinje fibres. Nature 1977; 269:611–613.

    Article  PubMed  CAS  Google Scholar 

  123. Baro I, Escande D. A long lasting Ca2+-activated outward current in guinea-pig atrial myocytes. Pfluegers Arch 1989; 415:63–71.

    Article  CAS  Google Scholar 

  124. Albitz R, Gainullin R, Kukushkin N, Nilius B, Saxon M. Contribution of a Ca-dependent component to the transient outward current in rabbit ventricular fibres. Biomed Biochim Acta 1988; 47:1077–1080.

    PubMed  CAS  Google Scholar 

  125. Kenyon JL, Sutko JL. Calcium- and voltage-activated plateau currents of cardiac Purkinje fibers. J Gen Physiol 1987; 89:921–958.

    Article  PubMed  CAS  Google Scholar 

  126. Callewaert G, Vereecke J, Carmeliet E. Existence of a calcium-dependent potassium channel in the membrane of cow cardiac Purkinje cells. Pfluegers Arch 1986; 406:424–426.

    Article  CAS  Google Scholar 

  127. Agus ZA, Dukes ID, Morad M. Divalent cations modulate the transient outward current in rat ventricular myocytes. Am J Physiol 1991; 26LC310–C318.

    Google Scholar 

  128. Dukes ID, Morad M. The transient K+ current in rat ventricular myocytes: Evaluation of its Ca+ and Na+ dependence. J Physiol (Lond) 1991; 435:395–420.

    CAS  Google Scholar 

  129. Trautwein W, Gottstein U, Dudel J. Der Aktionsstrom der Myokardfaser im Sauerstoffmangel. Pfluegers Arch 1954; 260:40–60.

    Article  CAS  Google Scholar 

  130. Vleugels A, Vereecke J, Carmeliet E. Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ Res 1980; 47:501–508.

    PubMed  CAS  Google Scholar 

  131. Ashcroft SJH, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal 1990; 2:197–214.

    Article  PubMed  CAS  Google Scholar 

  132. Davies NW, Standen NB, Stanfield PR. ATP-dependent potassium channels of muscle cells—Their properties, regulation, and possible functions. J Bio-energetics and Biomembranes 1991; 23:509–535.

    Article  CAS  Google Scholar 

  133. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983; 305:147–148.

    Article  PubMed  CAS  Google Scholar 

  134. Trübe G, Hescheler J. Potassium channels in isolated patches of cardiac cell membrane. Naunyn-Schmiedeberg’s Arch Pharmacol 1983; 322.R64. Abstract.

    Google Scholar 

  135. Friedrich M, Benndorf K, Schwalb M, Hirche H. Effects of anoxia on K and Ca currents in isolated guinea pig cardiocytes. Pfluegers Arch 1990; 416:207–209.

    Article  CAS  Google Scholar 

  136. Isenberg G, Vereecke J, Heyden G, Carmeliet E. The shortening of the action potential by DNP in guinea-pig ventricular myocytes is mediated by an increase of a time-independent K conductance. Pfluegers Arch 1983; 397:251–259.

    Article  CAS  Google Scholar 

  137. Noma A, Shibasaki T. Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol (Lond) 1985; 363:463–480.

    CAS  Google Scholar 

  138. Weiss JN, Lamp ST. Cardiac ATP-sensitive K+ channels: Evidence for preferential regulation by glycolysis. J Gen Physiol 1989; 94:911–935.

    Article  PubMed  CAS  Google Scholar 

  139. Wilde AAM, Escande D, Schumacher CA, Thüringer D, Mestre M, Fiolet JWT, Janse MJ. Potassium accumulation in the globally ischemic mammalian heart: A role for the ATP-sensitive potassium channel. Circ Res 1990; 67:835–843.

    PubMed  CAS  Google Scholar 

  140. Nakamura S, Kiyosue T, Arita M. Glucose reverses 2,4-dinitrophenol induced changes in action potentials and membrane currents of guinea pig ventricular cells via enhanced glycolysis. Cardiovasc Res 1989; 23:286–294.

    Article  PubMed  CAS  Google Scholar 

  141. Nichols CG, Lederer WJ. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol (Lond) 1990; 423:91–110.

    CAS  Google Scholar 

  142. Pilsudski R, Rougier O, Tourneur Y. Reversible activation of the ATP-dependent potassium current with dialysis of frog atrial cells by micromolar concentrations of GDP. J Membr Biol 1990; 117:223–231.

    Article  PubMed  CAS  Google Scholar 

  143. Findlay I. ATP4− and ATPMg inhibit the ATP-sensitive K+ channel of rat ventricular myocytes. Pfluegers Arch 1988; 412:37–41.

    CAS  Google Scholar 

  144. Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ. Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia. Circ Res 1991; 68:1693–1702.

    PubMed  CAS  Google Scholar 

  145. Kakei M, Noma A, Shibasaki T. Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol (Lond) 1985; 363:441–462.

    CAS  Google Scholar 

  146. Lederer WJ, Nichols CG. Nucleotide modulation of the activity of rat heart ATP-sensitive channels in isolated membrane patches. J Physiol (Lond) 1989; 419:193–211.

    CAS  Google Scholar 

  147. Qin D, Takano M, Noma A. Kinetics of ATP-sensitive K+ channel revealed with oil-gate concentration jump method. Am J Physiol 1989; 257:H1–H10.

    Google Scholar 

  148. Albitz R, Kammermeier H, Nilius B. Free energy of ATP-hydrolysis fails to affect ATP-dependent potassium channels in isolated mouse ventricular cells. J Mol Cell Cardiol 1990; 22:183–190.

    Article  PubMed  CAS  Google Scholar 

  149. Findlay I. Effects of ADP upon the ATP-sensitive K+ channel in rat ventricular myocytes. J Membr Biol 1988; 101:83–92.

    Article  PubMed  CAS  Google Scholar 

  150. Fan Z, Nakayama K, Hiraoka M. Pinacidil activates the ATP-sensitive K+ channel in inside-out and cell-attached patch membranes of guinea-pig ventricular myocytes. Pfluegers Arch 1990; 415:387–394.

    Article  CAS  Google Scholar 

  151. Kakei M, Noma A. Adenosine-5’-triphosphate-sensitive single potassium channel in the atrioventricular node cell of the rabbit heart. J Physiol (Lond) 1984; 352:265–284.

    CAS  Google Scholar 

  152. Sanguinetti MC. Na+ iactivated and ATP-sensitive K+ channels in the heart. Prog Clin Biol Res 1990; 334:85–109.

    PubMed  CAS  Google Scholar 

  153. Zilberter Y, Burnashev NA, Papin A, Portnov V, Khodorov BI. Gating kinetics of ATP-sensitive single potassium channels in myocardial cells depends on electromotive force. Pfluegers Arch 1988; 411:584–589.

    Article  CAS  Google Scholar 

  154. Cameron JS, Kimura S, Jackson-Burns DA, Smith BD, Bassett AL. ATP-sensitive K+ channels are altered in hypertrophied ventricular myocytes. Am J Physiol 1988; 255:H1254–H1258.

    PubMed  CAS  Google Scholar 

  155. Tseng GN, Hoffman BF. Actions of pinacidil on membrane currents in canine ventricular myocytes and their modulation by intracellular ATP and cAMP. Pfluegers Arch 1990; 415:414–424.

    Article  CAS  Google Scholar 

  156. Escande D, Thüringer D, Le Guern S, Courteix J, Laville M, Cavero I. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes. Pfluegers Arch 1989; 414:669–675.

    Article  CAS  Google Scholar 

  157. Kim D, Duff RA. Regulation of K+ channels in cardiac myocytes by free fatty acids. Circ Res 1990; 67:1040–1046.

    PubMed  CAS  Google Scholar 

  158. Nakayama K, Fan Z, Marumo F, Hiraoka M. Interrelation between pinacidil and intracellular ATP concentrations on activation of the ATP-sensitive K+ current in guinea pig ventricular myocytes. Circ Res 1990; 67:1124–1133.

    PubMed  CAS  Google Scholar 

  159. Thüringer D, Escande D. Apparent competition between ATP and the potassium channel opener RP 49356 on ATP-sensitive K+ channels of cardiac myocytes. Mol Pharmacol 1989; 36:897–902.

    PubMed  Google Scholar 

  160. Sakmann B, Neher E. Geometric parameters of pipettes and membrane patches. In: Sakmann B, Neher E, eds. Single Channel Recording. New York: Plenum; 1983:37–51.

    Google Scholar 

  161. Benndorf K, Friedrich M, Hirche H. Anoxia opens ATP regulated K-channels in isolated heart cells of the guinea pig. Pfluegers Arch 1991; 419:108–110.

    Article  CAS  Google Scholar 

  162. Faivre JF, Findlay I. Action potential duration and activation of ATP-sensitive potassium current in isolated guinea-pig ventricular myocytes. Biochim Biophys Acta 1990; 1029:167–172.

    Article  PubMed  CAS  Google Scholar 

  163. Escande D. The pharmacology of ATP-sensitive K+ channels in the heart. Pfluegers Arch 1989; 414:93–98.

    Article  Google Scholar 

  164. Findlay I. ATP-sensitive K+ channels in rat ventricular myocytes are blocked and inactivated by internal divalent cations. Pfluegers Arch 1987; 410: 313–320.

    Article  CAS  Google Scholar 

  165. Horie M, Irisawa H, Noma A. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol (Lond) 1987; 387:251–272.

    CAS  Google Scholar 

  166. DeWeille JR, Lazdunski M. Regulation of the ATP-sensitive potassium channel. In: Narahashi T, ed. Ion Channels, Vol. 2. New York: Plenum; 1990:205–222.

    Google Scholar 

  167. Findlay I. Calcium-dependent inactivation of the ATP-sensitive K+ channel of rat ventricular myocytes. Biochim Biophys Acta 1988; 943:297–304.

    Article  PubMed  CAS  Google Scholar 

  168. Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990; 259:H820–H826.

    PubMed  CAS  Google Scholar 

  169. Cuevas J, Bassett AL, Cameron JS, Furukawa T, Myerburg RJ, Kimura S. Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes. Am J Physiol 1991; 261:H755–H761.

    PubMed  CAS  Google Scholar 

  170. Haworth RA, Goknur AB, Berkoff HA. Inhibition of ATP-sensitive potassium channels of adult rat heart cells by antiarrhythmic drugs. Circ Res 1989; 65:1157–1160.

    PubMed  CAS  Google Scholar 

  171. Rändle JCR, Oliet SHR, Renaud JF. Alkali cation permeability and caesium blockade of cromakalim-activated current in guinea-pig ventricular myocytes. Br J Pharmacol 1991; 103:1795–1801.

    PubMed  Google Scholar 

  172. Arena JP, Kass RS. Activation of ATP-sensitive K channels in heart cells by pinacidil: Dependence on ATP. Am J Physiol 1989; 257:H2092–H2096.

    PubMed  CAS  Google Scholar 

  173. Fan Z, Nakayama K, Hiraoka M. Multiple actions of pinacidil on adenosine triphosphate-sensitive potassium channels in guinea-pig ventricular myocytes. J Physiol (Lond) 1990; 430:273–295.

    CAS  Google Scholar 

  174. Hiraoka M, Fan Z. Activation of ATP-sensitive outward K+ current by nicorandil (2-nicotinamidoethyl nitrate) in isolated ventricular myocytes. J Pharmacol Exp Ther 1989; 250:278–285.

    PubMed  CAS  Google Scholar 

  175. Martin CL, Chinn K. Pinacidil opens ATP-dependent K+ channels in cardiac myocytes in an ATP- and temperature-dependent manner. J Cardiovasc Pharmacol 1990; 15:510–514.

    Article  PubMed  CAS  Google Scholar 

  176. Pilsudski R, Rougier O, Tourneur Y. Action of cromakalim on potassium membrane conductance in isolated heart myocytes of frog. Br J Pharmacol 1990; 100:581–587.

    PubMed  CAS  Google Scholar 

  177. Ripoll C, Lederer WJ, Nichols CG. Modulation of ATP-sensitive K+ channel activity and contractile behaviour in mammalian ventricle by the potassium channel openers cromakalim and RP49356. J Pharmacol Exp Ther 1990; 255:429–435.

    PubMed  CAS  Google Scholar 

  178. Robertson DW, Steinberg MI. Potassium channel modulators: Scientific applications and therapeutic promise. J Med Chem 1990; 33:1530–1541.

    Google Scholar 

  179. Tung RT, Kurachi Y. On the mechanism of nucleotide diphosphate activation of the ATP-sensitive K+ channel in ventricular cell of guinea-pig. J Physiol (Lond) 1991; 437:239–256.

    CAS  Google Scholar 

  180. Richer C, Pratz J, Mulder P, Mondot S, Guidicelli JF, Cavero I. Cardiovascular and biological effects of K+ channel openers, a class of drugs with vasorelaxant and cardioprotective properties. Life Sei 1990; 47:1693–1705.

    Article  CAS  Google Scholar 

  181. DeWeille JR, Fosset M, Mourre C, Schmid-Antomarchi H, Bernardi H, Lazdunski M. Pharmacology and regulation of ATP-sensitive K+ channels. Pfluegers Arch 1989; 414:80–87.

    Article  Google Scholar 

  182. Faivre JF, Findlay I. Effects of tolbutamide, glibenclamide and diazoxide upon action potentials recorded from rat ventricular muscle. Biochim Biophys Acta 1989; 984:1–5.

    Article  PubMed  CAS  Google Scholar 

  183. Wilde AAM, Escande D, Schumacher CA, Thüringer D, Mestre M, Fiolet JWT. Glibenclamide inhibition of ATP-sensitive K+ channels and ischemia-induced K+ accumulation in the mammalian heart. Pfluegers Arch 1989; 414:S176. Abstract.

    Google Scholar 

  184. Löffelholz K, Pappano AJ. The parasympathetic neuro-effector junction of the heart. Pharmacol Rev 1985; 37:1–24.

    PubMed  Google Scholar 

  185. Schimerlik MI. Structure and regulation of muscarinic receptors. Annu Rev Physiol 1989; 51:217–227.

    Article  PubMed  CAS  Google Scholar 

  186. Szabo G, Otero AS. G protein mediated regulation of K+ channels in heart. Annu Rev Physiol 1990; 52:293–305.

    Article  PubMed  CAS  Google Scholar 

  187. Brown AM. Regulation of heartbeat by G protein-coupled ion channels. Am J Physiol 1990; 259:H1621–H1627.

    PubMed  CAS  Google Scholar 

  188. Brown AM, Birnbaumer L. Ionic channels and their regulation by G protein subunits. Annu Rev Physiol 1990; 52:197–213.

    Article  PubMed  CAS  Google Scholar 

  189. Brown AM, Yatani A, Codina J, Birnbaumer L. Gating of atrial muscarinic K+ channels by G proteins. Prog Clin Biol Res 1990; 334:303–312.

    PubMed  CAS  Google Scholar 

  190. Cerbai E, Klöckner U, Isenberg G. Ca-antagonistic effects of adenosine in guinea pig atrial cells. Am J Physiol 1988; 255:H872–H878.

    PubMed  CAS  Google Scholar 

  191. Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L. The a subunit of the GTP binding protein Gk opens atrial potassium channels. Science 1987; 236:442–445.

    Article  PubMed  CAS  Google Scholar 

  192. Inomata N, Ishihara T, Akaike N. Activation kinetics of the acetylcholine-gated potassium current in isolated atrial cells. Am J Physiol 1989; 257:H646–H650.

    Google Scholar 

  193. Kirsch GE, Brown AM. Trypsin activation of atrial muscarinic K+ channels. Am J Physiol 1989; 257.H334–H338.

    PubMed  CAS  Google Scholar 

  194. Mattera R, Yatani A, Kirsch GE, Graf R, Okabe K, Olate J, Codina J, Brown AM, Birnbaumer L. Recombinant ar3 subunit of G protein activates Gk-gated K+ channels. J Biol Chem 1989; 264:465–471.

    PubMed  CAS  Google Scholar 

  195. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 1985; 317:536–538.

    Article  PubMed  CAS  Google Scholar 

  196. Sakmann B, Noma A, Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 1983; 303:250–253.

    Article  PubMed  CAS  Google Scholar 

  197. Yatani A, Codina J, Brown AM, Birnbaumer L. Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 1987; 235:207–211.

    Article  PubMed  CAS  Google Scholar 

  198. Yatani A, Mattera R, Codina J, Graf R, Okabe K, Padrell E, Iyengar R, Brown AM, Birnbaumer L. The G protein-gated atrial K+ channel is stimulated by three distinct Gi, alpha-subunits. Nature 1988; 336:680–682.

    Article  PubMed  CAS  Google Scholar 

  199. Breitwieser GE, Szabo G. Uncoupling of cardiac muscarinic and ß-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 1985; 317:538–540.

    Article  PubMed  CAS  Google Scholar 

  200. Sorota S, Hoffman BF. Role of G-proteins in the acetylcholine-induced potassium current of canine atrial cells. Am J Physiol 1989; 257:H1516–H1522.

    PubMed  CAS  Google Scholar 

  201. Heidbüchel H, Callewaert G, Vereecke J, Carmeliet E. ATP-dependent activation of atrial muscarinic K+ channels in the absence of agonist and G-nucleotides. Pfluegers Arch 1990; 416:213–215.

    Article  Google Scholar 

  202. Otero AS, Breitwieser GE, Szabo G. Activation of muscarinic potassium currents by ATP S in atrial cells. Science 1988; 242:443–445.

    Article  PubMed  CAS  Google Scholar 

  203. Kurachi Y, Ito H, Sugimoto T, Katada T, Michio U. Activation of atrial muscarinic K+ channels by low concentrations of ßy subunits of rat brain G protein. Pfluegers Arch 1989; 413:325–327.

    Article  CAS  Google Scholar 

  204. Logothesis DE, Kim D, Northup JK, Neer EJ, Clapham DE. Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc Natl Acad Sei USA 1988; 85:5814–5818.

    Article  Google Scholar 

  205. Logothesis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The ßy subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 1987; 325:321–326.

    Article  Google Scholar 

  206. Okabe K, Yatani A, Evans T, Ho YK, Codina J, Birnbaumer L, Brown AM. ßy Dimers of G proteins inhibit atrial muscarinic K+ channels. J Biol Chem 1990; 265:12854–12858.

    PubMed  CAS  Google Scholar 

  207. Yatani A, Okabe K, Birnbaumer L, Brown AM. Detergents, dimeric Gßy, and eicosanoid pathways to muscarinic atrial K+ channels. Am J Physiol 1990; 258:H1507–H1514.

    PubMed  CAS  Google Scholar 

  208. Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE. G-protein ßy-subunits activate the cardiac muscarine K+-channel via phospholipase A2. Nature 1989; 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  209. Scherer RW, Breitwieser GE. Arachidonic acid metabolites alter G protein-mediated signal transduction in heart: Effects on muscarinic K+ channels. J Gen Physiol 1990; 96:735–755.

    Article  PubMed  CAS  Google Scholar 

  210. Bailey JC, Rardon DP. Electrophysiological effects of adenosine and dipyridamole on cardiac Purkinje fibers and ventricular myocardium. Prog Clin Biol Res 1987; 230:119–133.

    PubMed  CAS  Google Scholar 

  211. Belardinelli L, Giles W, West GA. Ionic mechanisms of adenosine actions in pacemaker cell from rabbit heart. J Physiol (Lond) 1988; 405:615–633.

    CAS  Google Scholar 

  212. Friel DD, Bean BP. Two ATP-activated conductances in bullfrog atrial cells. J Gen Physiol 1988; 91:1–27.

    Article  PubMed  CAS  Google Scholar 

  213. Friel DD, Bean BP. Dual control by ATP and acetylcholine of inwardly rectifying K+ channels in bovine atrial cells. Pfluegers Arch 1990; 415:651–657.

    Article  CAS  Google Scholar 

  214. Isenberg G, Cerbai E, Klöckner U. Ionic channels and adenosine in isolated heart cells. In: Gerlach E, ed. Topics and Perspectives in Adenosine Research. Berlin: Springer-Verlag; 1987:323–335.

    Google Scholar 

  215. Kim D. Calcitonin-gene-related peptide activates the muscarinic-gated K+ current in atrial cells. Pfluegers Arch 1991; 418:338–345.

    Article  CAS  Google Scholar 

  216. Kim D. Endothelin activation of an inwardly rectifying K+-current in atrial cells. Circ Res 1991; 69:250–255.

    PubMed  CAS  Google Scholar 

  217. Kurachi Y, Nakajima T, Sugimoto T. On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: Involvement of GTP-binding proteins. Pfluegers Arch 1986; 407:264–274.

    Article  CAS  Google Scholar 

  218. Lerman BB, Belardinelli L. Cardiac electrophysiology of adenosine—Basic and clinical concepts. Circulation 1991; 83:1499–1509.

    PubMed  CAS  Google Scholar 

  219. Pelleg A, Mi tamura H, Mitsuoka T, Mazgalev T, Michelson EL, Dreifus LS. Interactive negative chronotropic actions of adenosine and verapamil on the canine sinus node in vivo. Prog Clin Biol Res 1987; 230:235–252.

    CAS  Google Scholar 

  220. West GA. Actions of adenosine on the sinus node. Prog Clin Biol Res 1987; 230:97–108.

    PubMed  CAS  Google Scholar 

  221. Boyett MR, Kirby MS, Orchard CH, Roberts AB. The negative inotropic effect of acetylcholine on ferret ventricular myocardium. J Physiol (Lond) 1988; 404:613–635.

    CAS  Google Scholar 

  222. Carmeliet E, Mubagwa K. Desensitization of the acetylcholine-induced increase of potassium conductance in rabbit cardiac Purkinje fibres. J Physiol (Lond) 1986; 371:239–255.

    CAS  Google Scholar 

  223. Kim D. Modulation of acetylcholine-activated K+ channel function in rat atrial cells by phosphorylation. J Physiol (Lond) 1991; 437:133–155.

    CAS  Google Scholar 

  224. Kurachi Y, Nakajima T, Sugimoto T. Short-term desensitization of muscarinic K+ channel current in isolated atrial myocytes and possible role of GTP-binding proteins. Pfluegers Arch 1987; 410:227–233.

    Article  CAS  Google Scholar 

  225. Kaibara M, Nakajima T, Irisawa H, Giles W. Regulation of spontaneous opening of muscarinic K+ channels in rabbit atrium. J Physiol (Lond) 1991; 433:589–613.

    CAS  Google Scholar 

  226. Kim D. ß-Adrenergic regulation of the muscarinic-gated K+ channel via cyclic AMP-dependent protein kinase in atrial cells. Circ Res 1990; 67:1292–1298.

    PubMed  CAS  Google Scholar 

  227. Soejima M, Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pfluegers Arch 1984; 400:424–431.

    Article  CAS  Google Scholar 

  228. Yatani A, Polakis P, Halenbeck R, McCormick F, Brown AM. Ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell 1990; 61:769–776.

    Article  PubMed  CAS  Google Scholar 

  229. Sato R, Hisatome I, Wasserstrom JA, Arentzen CE, Singer DH. Acetylcholine-sensitive potassium channels in human atrial myocyte. Am J Physiol 1990; 259:H1730–H1735.

    PubMed  CAS  Google Scholar 

  230. Shumaker JM, Clark JW, Giles W, Szabo G. A model of the muscarinic receptor-induced changes in K+-current and action potentials in the bullfrog atrial cell. Biophysic J 1990; 57:567–576.

    Article  CAS  Google Scholar 

  231. Irisawa H. Membrane currents in cardiac pacemaker tissue. Experientia 1987; 43:1131–1240.

    Article  PubMed  CAS  Google Scholar 

  232. Noma A, Peper K, Trautwein W. Acetylcholine-induced potassium current fluctuations in the rabbit sino-atrial node. Pfluegers Arch 1979; 381:255–262.

    Article  CAS  Google Scholar 

  233. Lewis DL, Clapham DE. Somatostatin activates an inward rectifying K+ channel in neonatal rat atrial cells. Pfluegers Arch 1989; 414:492–494.

    Article  CAS  Google Scholar 

  234. Kurachi Y, Ito H, Sugimoto T, Shimizu T, Miki I, Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature 1989; 337:555–557.

    Article  PubMed  CAS  Google Scholar 

  235. Ito H, Takikawa R, Iguchi M, Hamada E, Sugimoto T, Kurachi Y. Heparin uncouples the muscarinic receptors from GK protein in the atrial cell membrane of the guinea-pig heart. Pfluegers Arch 1990; 417:126–128.

    Article  CAS  Google Scholar 

  236. Nakajima T, Irisawa H, Giles W. N-ethyl-maleimide uncouples muscarinic receptors from acetylcholine-sensitive potassium channels in bullfrog atrium. J Gen Physiol 1990; 96:887–903.

    Article  PubMed  CAS  Google Scholar 

  237. Nakajima T, Kaibara M, Irisawa H, Giles W. Inhibition of the muscarinic receptor-activated K+ current by N-ethylmaleimide in rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 1991; 343:14–19.

    CAS  Google Scholar 

  238. Martin AR, Dryer SE. Potassium channels activated by sodium. Quarterly Jour Exp Physiol 1989; 74:1033–1041.

    CAS  Google Scholar 

  239. Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H, Irisawa H. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature 1984; 309:354–356.

    Article  PubMed  CAS  Google Scholar 

  240. Luk HN, Carmeliet E. Na+-activated K+ current in cardiac cells: Rectification, open probability, block and role in digitalis toxicity. Pfluegers Arch 1990; 416:766–768.

    Article  CAS  Google Scholar 

  241. Rodrigo GC, Chapman RA. A sodium-activated potassium current in intact ventricular myocytes isolated from the guinea-pig heart. Exp Physiol 1990; 75:839–842.

    PubMed  CAS  Google Scholar 

  242. Wang Z, Kimitsuki T, Noma A. Conductance properties of the Na+-activated K+ channel in guinea-pig ventricular cells. J Physiol (Lond) 1991; 433:241–257.

    CAS  Google Scholar 

  243. Kim D, Clapham DE. Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 1989; 244:1174–1176.

    Article  PubMed  CAS  Google Scholar 

  244. Yue DT, Marban E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pfluegers Arch 1988; 413:127–133.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London Limited

About this chapter

Cite this chapter

Markwardt, F. (2002). The Role of Potassium Ions in the Control of Heart Function. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics