Skip to main content
Log in

Cardiac Purkinje fibers: Cesium as a tool to block inward rectifying potassium currents

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

When a cardiac Purkinje fiber is exposed to 20 mM Cs the membrane potential falls to about −60 mV within 1 min. In voltage clamp experiments, exposure to Cs blocks both the pacemaker currenti K2 and the instantaneous outward currenti K2 , while the delayed outward rectifying potassium currenti x is not affected. In the presence of 20 mM Cs, the steady state currents are related linearly to the clamp potential and are insensitive to alterations in [K] o .

The Cs sensitive current was defined as the difference between control and membrane currents measured in the presence of 20 mM Cs. This current displays inward-going rectification and its reversal potential follows log [K] o with a slope of 60 mV per decade.

Besides the blockage of potassium conductance, 20 mM Cs affects the rate of sodium pumping. The pump generates an outward currenti p which can be blocked by 10−5 M dihydro-ouabain. In the presence of 20 mM Cs,i p is independent of [K] o and has a value similar to that in Tyrodes containing no Cs, 5.4 mM K. In Cs free solutions,i p decreases with [K] o , thus addition of 20 mM Cs increasesi p when [K] o is lower than 5.4 mM.

Effects of 20 mM Cs on other membrane currents were not observed. It is concluded that Cs can be used as a tool to separate inward rectifying potassium currents from the net membrane current of the cardiac Purkinje fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W. J.: Electrical studies of internally perfused squid axons. In: Biophysics and physiology of excitable membranes (W. J. Adelman, ed.). New York: Van Nostrand Reinhold Co. 1971

    Google Scholar 

  • Adrian, R. H.: The rubidium and potassium permeability of frog muscle membrane. J. Physiol. (Lond.)175, 134–159 (1964)

    Google Scholar 

  • Adrian, R. H.: Rectification in muscle membrane. Progr. Biophys. molec. Biol.19, 341–369 (1969)

    Google Scholar 

  • Baker, P. F., Conelly, C. M.: Some properties of the external activation site of the sodium pump in crab nerve. J. Physiol. (Lond.)185, 270–297 (1966)

    Google Scholar 

  • Beaugé L. A., Medici, A., Sjodin, R. A.: The influence of external caesium ions on potassium efflux in frog skeletal muscle. J. Physiol. (Lond.)228, 1–11 (1973)

    Google Scholar 

  • Beaugé, L. A., Sjodin, R. A.: Transport of caesium in frog muscle. J. Physiol. (Lond.)194, 105–123 (1968)

    Google Scholar 

  • Bezanilla, F., Armstrong, C. M.: Negative conductance caused by entry of sodium and caesium ions into potassium channels of squid axons. J. gen. Physiol.60, 588–608 (1972)

    Google Scholar 

  • Brooks, C. McC., Hoffman, B. F., Suckling, E. E., Orias, O.: Excitability of the heart, p. 288. New York-London: Grune and Stratton 1955

    Google Scholar 

  • Deck, K. A., Trautwein, W.: Ionic current in cardiac excitation. Pflügers Arch. ges. Physiol.280, 63–80 (1964)

    Google Scholar 

  • Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: The potassium component of membrane current in Purkinje fibers. Pflügers Arch. ges. Physiol.296, 308–327 (1967)

    Google Scholar 

  • Dudel, J., Peper, K., Trautwein, W.: The contribution of Ca2+-ions to the current voltage relation in cardiac muscle (Purkinje fibers). Pflügers Arch. ges. Physiol.288, 262–281 (1966)

    Google Scholar 

  • Gainer, H., Grundfest, H.: Permeability of alkali metal cations in Lobster muscle. A comparison of electrophysiological and osmometric analysis. J. gen. Physiol.51, 399–425 (1968)

    Google Scholar 

  • Goldman, D. E.: Potential, impedance, and rectification in membranes. J. gen. Physiol.27, 37–60 (1943)

    Google Scholar 

  • Haas, H. G., Kern, R.: Potassium fluxes in voltage clamped Purkinje fibres. Pflügers Arch. ges. Physiol.291, 69–84 (1966)

    Google Scholar 

  • Hagiwara, S., Takahashi, K.: The anomolous rectification and cation selectivity of the membrane of a Starfish egg cell. J. Membrane Biol.18, 61–80 (1974)

    Google Scholar 

  • Hall, A. E., Hutter, O. F., Noble, D.: Current-voltage relations of Purkinje fibers in sodium-deficient solutions. J. Physiol. (Lond.)166, 225–240 (1963)

    Google Scholar 

  • Hauswirth, O., Noble, D., Tsien, R. W.: Separation of the pacemaker and plateau components of delayed rectification in cardiac Purkinje fibres. J. Physiol. (Lond.)225, 211–235 (1972)

    Google Scholar 

  • Isenberg, G., Trautwein, W.: The effect of dihydro-ouabain and lithium-ions on the outward current in cardiac Purkinje fibers. Evidence for electrogenicity of active transport. Pflügers Arch.350, 41–54 (1974)

    Google Scholar 

  • Katz, B.: The electrical properties of the muscle fibre membrane. Proc. roy. Soc. B135, 506–534 (1948)

    Google Scholar 

  • Kernan, R. P.: Studies of caesium uptake by rat solens and vastus lateralis muscles in vivo and its efflux rate relative to potassium in vitro. Pflügers Arch.333, 95–110 (1972)

    Google Scholar 

  • McAllister, R. E., Noble, D.: The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J. Physiol. (Lond.)186, 632–662 (1966)

    Google Scholar 

  • Noble, D.: The initiation of the heart beat. London: Oxford University Press 1975

    Google Scholar 

  • Noble, D., Tsien, R. W.: The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J. Physiol. (Lond.)195, 185–214 (1968)

    Google Scholar 

  • Noble, D., Tsien, R. W.: Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol. (Lond.)200, 205–231 (1969)

    Google Scholar 

  • Reuter, H.: The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J. Physiol. (Lond.)192, 479–492 (1967)

    Google Scholar 

  • Ruiz-Manresa, F., Ruarte, A. C., Schwartz, T. L., Grundfest, H.: Potassium inactivation and impedance changes during spike electrogenesis in eel electroplagues. J. gen. Physiol.55, 33–47 (1970)

    Google Scholar 

  • Skou, J. C.: Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev.45, 596–617 (1965)

    Google Scholar 

  • Weidmann, S.: Elektrophysiologie der Herzmuskelfaser. Bern: Huber 1956

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 38, Project G2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenberg, G. Cardiac Purkinje fibers: Cesium as a tool to block inward rectifying potassium currents. Pflugers Arch. 365, 99–106 (1976). https://doi.org/10.1007/BF01067006

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067006

Key words

Navigation