Skip to main content

Fatty Acid Biosynthesis and Biologically Significant Acyl Transfer Reactions in Pseudomonads

  • Chapter
Pseudomonas

Abstract

Fatty acid synthesis (FAS) is essential for cellular function by providing precursors for synthesis of numerous cellular constituents, including phospholipids16, lipopolysaccharides84, rhamnolipids9, 72, polyhydroxyalkanoic acids2, 61, oligosaccharides23, 27 and proteins48. More recently, acyl-acyl carrier proteins (acyl-ACPs) derived from the fatty acid biosynthetic (Fab) pathway were shown to be the acyl donors for synthesis of acylated homoserine lactones (AHLs) that are required for cell-to-cell communication and the many processes depending on it41, 43, 67, 76, 100. In addition, fatty acids play numerous other diverse roles in the physiology of pseudomonads. Adaptive alterations of membrane fatty acids and phospholipids play a role in the solvent tolerance of Pseudomonas putida and probably other pseudomonads37, 86. Such adaptive fatty acid alterations also occur in response to changes in growth conditions, with temperature and growth phase being the most influential parameters in Pseudomonas aeruginosa 11. Fatty acid composition of phospholipids also can influence some behavioral traits, such as P. aeruginosa twitching motility up phospholipid gradients53. The unique fatty acid patterns of individual Pseudomonas strains determined by gas chromatographic analysis can be utilized to identify individual bacterial species19, 68, 69. This technology forms the basis of the commercially available Sherlock® microbial identification system (MIDI, Inc., Newark, Delaware, USA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, P.S., Cronan, IE., and DeMendoza, D., 1998, A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol., 180:2194–2200.

    PubMed  CAS  Google Scholar 

  2. Anderson, A.J., Haywood, G.W., and Dawes, E.A., 1990, Biosynthesis and composition of poly(hydroxyalkanoates). Int. J. Biol. Macromol., 12:102–105.

    Article  PubMed  CAS  Google Scholar 

  3. Baldock, C., Rafferty, J.B., Sedelnikova, S.E., Baker, P.J., Stuitje, A.R., Slabas, A.R., Hawkes, T.R., and Rice, D.W., 1996, A mechanism of drug action revealed by structural studies of enoyl reductase. Science, 274:2107–2110.

    Article  PubMed  CAS  Google Scholar 

  4. Barry, C.E., Lee, R.E., Mdluli, K., Sampson, A.E., Schroeder, B.G., Slayden, R.A., and Yuan, Y., 1998, Mycolic acids: Structure, biosynthesis and physiological functions. Prog. Lipid Res., 37:143–179.

    Article  PubMed  CAS  Google Scholar 

  5. Best, E. and Knauf, VC., 1993, Organization and nucleotide sequence of the genes encoding the biotin carboxyl carrier protein and biotin carboxylase protein of Pseudomonas aeruginosa acetyl coenzyme A carboxylase. J. Bacteriol., 175:6881–6889.

    PubMed  CAS  Google Scholar 

  6. Bhargava, H.N. and Leonard, P.A., 1996, Triclosan: Applications and safety. Am. J. Infect. Control, 24:209–218.

    Article  PubMed  CAS  Google Scholar 

  7. Bloch, K., 1971, β-hydroxythioester dehydrase. In P.D. Boyer (ed.), The Enzymes. Academic Press, New York.

    Google Scholar 

  8. Campbell, J.W. and Cronan, J.E., 2001, Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol., 55:305–332.

    Article  PubMed  CAS  Google Scholar 

  9. Campos-Garcia, J., Caro, A.D., Najera, R., Miller-Maier, R.M., Al-Tahhan, R.A., and Soberon-Chavez. G., 1998, The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent β-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J. Bacteriol., 180:4442–4451.

    PubMed  CAS  Google Scholar 

  10. Cha, C., Chen, YC., Shaw, P.D., and Farrand, S.K., 1998, Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Microbe Plant Interact., 11:1119–1129.

    Article  CAS  Google Scholar 

  11. Chang, Y.-Y, Eichel, J., and Cronan, J.E., 2000, Metabolic instability of Escherichia coli cyclopropane fatty acid synthase is due to RpoH-dependent proteolysis. J. Bacteriol., 182:4288–4294.

    Article  PubMed  CAS  Google Scholar 

  12. Chayabutra, C. and Ju, L.K., 2001, Polyhydroxyalkanoic acids and rhamnolipids are synthe-siszed sequentially in hexadecane fermentation by Pseudomonas aeruginosa. Biotechnol. Prog., 17:419–423.

    Article  PubMed  CAS  Google Scholar 

  13. Chin-A-Woeng, T.F., van den Broek, D., de Voer, G., van der Drift, K.M., Tuinman, S., Thomas-Oates, J.E., Lugtenberg, B.J., and Bloemberg, G.V., 2001, Phenazine-l-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1319 is regulated by multiple factors secreted into the growth medium. Mol. Plant Microbe Interact., 14:969–979.

    Article  PubMed  CAS  Google Scholar 

  14. Chuanchuen, R., Karkhoff-Schweizer, R.R., and Schweizer, H.P., 2003, High-level triclosan resistance in Pseudomonas aeruginosa is solely due to efflux. Am. J. Infect. Control, 31:124–127.

    Article  PubMed  Google Scholar 

  15. Clark, D.P., DeMendoza, D., Polacco, M.L., and Cronan, J.E., 1983, β-hydroxydecanoyl thio ester dehydrase does not catalyze a rate-limiting step in Escherichia coli unsaturated fatty acid synthesis. Biochemistry, 22:5897–5902.

    Article  PubMed  CAS  Google Scholar 

  16. Cronan, J.E. and Rock, CO., 1996, Biosynthesis of membrane lipids. In EC. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K. Brooks Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger (eds), Escherichia coli and Salmonella, pp. 612–636. American Society for Microbiology Press, Washington, DC.

    Google Scholar 

  17. Crowfoot, P.D. and Hunt, A.L., 1970, Induced synthesis of cyclopropane fatty acid synthetase in Pseudomonas fluorescens. Biochim. Biophys. Acta, 218:555–557.

    Article  PubMed  CAS  Google Scholar 

  18. De Kievit, T.T. and Iglewski, B.H., 2000, Bacterial quorum sensing in pathogenic relationships. Infect. Immun., 68:4839–4849.

    Article  PubMed  Google Scholar 

  19. Dees, S.B., Hollis, D.G., Weaver, R.E., and Moss, C.W., 1983, Cellular fatty acid composition of Pseudomonas marginata and closely associated bacteria. J. Clin. Microbiol., 18:1073–1078.

    PubMed  CAS  Google Scholar 

  20. Dotson, G.D., Kaltashov, I.A., Cotter, R.J., and Raetz, C.R.H., 1998, Expression cloning of a Pseudomonas gene encoding a hydroxydecanoyl-acyl carrier protein-dependent UDP-GlcNAc acyltransferase. J. Bacteriol, 180:330–337.

    PubMed  CAS  Google Scholar 

  21. Dubois-Brissonnet, E, Malgrange, C., Guerin-Mechin, L., Heyd, B., and Leveau, J.Y. 2001, Changes in fatty acid composition of Pseudomonas aeruginosa ATCC15442 induced by growth conditions: Consequences of resistance to quatenary ammonium compounds. Microbios, 106:97–110.

    PubMed  CAS  Google Scholar 

  22. Ellis, R.J., Timms-Wilson, T.M., and Bailey, M.J., 2000, Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol., 2:274–284.

    Article  PubMed  CAS  Google Scholar 

  23. Epple, G., Van der Drift, K.M.G.M., Thomas-Oates, J.E., and Geiger, O., 1998, Characterization of a novel acyl carrier protein, RkpF, encoded by an operon involved in cap-sular polysaccharide biosynthesis in Sinrhizobium meliloti. J. Bacteriol., 180:4950–4954.

    PubMed  CAS  Google Scholar 

  24. Ernst, R.K., Yi, E.C., Guo, L., Lim, K.B., Burns, J.L., Hackett, M., and Miller, S.I., 1999, Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science, 286:1561–1565.

    Article  PubMed  CAS  Google Scholar 

  25. Finking, R., Solsbacher, X, Konz, D, Schobert, M., Schaefer, A., Jahn, D., and Marahiel, M.A., 2002, Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. J. Biol. Chem. 277:50293–50302.

    Article  PubMed  CAS  Google Scholar 

  26. Fischl, A.S. and Kennedy, E.P., 1990, Isolation and properties of acyl carrier protein phos-phodiesterase of Escherichia coli. J. Bacteriol., 172:5445–5449.

    PubMed  CAS  Google Scholar 

  27. Geiger, O., Spaink, H.P., and Kennedy, E.P., 1991, Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4′-phosphopantetheine prosthetic group. J. Bacteriol., 173:2872–2878.

    PubMed  CAS  Google Scholar 

  28. Grogan, D.W. and Cronan, J.E., 1997, Cyclopropane ring formation in membrane lipids. Microbiol. Mol. Biol. Rev., 61:429–441.

    CAS  Google Scholar 

  29. Hata, T., Sano, Y., Matsumae, A., Kamio, Y, Nomura, S., and Sugawara, R. 1960, Study of new antifungal antibiotic. J. Bacteriol. (Japan), 15:1075–1077.

    Google Scholar 

  30. Hayashi, T., Yamamoto, O., Sasaki, H., Kawaguchi, A., and Okazaki, A. 1983, Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem. Biophys. Res. Comm., 115:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  31. Hayashi, T., Yamamoto, O., Sasaki, H., and Okazaki, H., 1984, Inhibition of fatty acid synthesis by the antibiotic thiolactomycin. J.Antibiot., 37:1456–1461.

    Article  PubMed  CAS  Google Scholar 

  32. Heath, RJ. and Rock, CO., 1996, Roles of the FabA and FabZ β-hydroxyacyl-acyl carrier protein dehydratase in Escherichia coli fatty acid biosynthesis. J. Biol. Chem., 271:27795–27801.

    Article  PubMed  CAS  Google Scholar 

  33. Heath, RJ. and Rock, CO., 2000, A triclosan-resistant bacterial enzyme. Nature, 406:145–146.

    Article  PubMed  CAS  Google Scholar 

  34. Heath, R.J., Rubin, J.R., Holland, D.R., Zhang, E., Snow, ME., and Rock, CO., 1999, Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem., 274:11110–11114.

    Article  PubMed  CAS  Google Scholar 

  35. Heath, R.J., White, S.W., and Rock, CO., 2001, Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res., 40:467–497.

    Article  PubMed  CAS  Google Scholar 

  36. Heath, RJ., Yu, Y.-T., Shapiro, M.A., Olson, E., and Rock, CO., 1998, Broad spectrum antimicrobial biocides target the FabI component of fatty acid biosynthesis. J. Biol. Chem., 273:30316–30320.

    Article  PubMed  CAS  Google Scholar 

  37. Heipieper, HJ., de Waard, P., van der Meer, P., Killian, J.A., Isken, S., de Bont, J.A., Eggingk, G., and de Wolf, F.A., 2001, Regiospecific effect of cis-trans isomerization of unsaturated fatty acids in the solvent-tolerant strain Pseudomonas putida S12. Appl. Environ. Microbiol., 57:541–547.

    CAS  Google Scholar 

  38. Heipieper, HJ., Diefenbach, R., and Keweloh, H. 1992, Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol, 58:1847–1852.

    PubMed  CAS  Google Scholar 

  39. Herman, D.C., Zhang, Y, and Miller, R.M., 1997, Rhamnolipid (biosurfactant) effects on cell aggregration and biodegradation of residual hexadecane under suturated flow conditions. Appl. Environ. Microbiol, 63:3622–3627.

    PubMed  CAS  Google Scholar 

  40. Hoang, T.T., Ma, Y, Stern, RJ., McNeil, M.R., and Schweizer, H.P., 1999, Construction and use of low-copy number T7 expression vectors for purification of problem proteins: Purification of Mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and Rh1I proteins, and functional analysis of Rh1I. Gene, 237:361–371.

    Article  PubMed  CAS  Google Scholar 

  41. Hoang, T.T. and Schweizer, H.P., 1999, Characterization of the Pseudomonas aeruginosa enoyl-acyl carrier protein reductase: A target for triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol, 181:5489–5497.

    PubMed  CAS  Google Scholar 

  42. Hoang, T.T. and Schweizer, H.P., 1997, Fatty acid biosynthesis in Pseudomonas aeruginosa: Cloning and characterization of the fabAB operon encoding β-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) and β-ketoacyl-acyl carrier protein synthase I (FabB). J. Bacteriol., 179:5326–5332.

    PubMed  CAS  Google Scholar 

  43. Hoang, T.T, Sullivan, S.A., Cusick, J.K., and Schweizer, H.P., 2002, β-ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. Microbiology, 148:3849–3856.

    PubMed  CAS  Google Scholar 

  44. Hoffmann, N., Steinbuechel, A., and Rehm, B.H., 2000, Polyhydroxyalkanoate synthesis in Pseudomonas oleovorans from simple carbon sources: Homologous functional expression of cryptic phaG establishes a transacylase-mediated pathway. Appl Microbiol. Biotechnol., 54:665–670.

    Article  PubMed  CAS  Google Scholar 

  45. Hoffmann, N., Steinbuechel, A., and Rehm, B.H. 2000, The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain length constituents from non-related carbon sources. FEMS Microbiol. Lett., 184:253–259.

    Article  PubMed  CAS  Google Scholar 

  46. Holtwick, R., Meinhardt, F., and Keweloh, H., 1997, Cis-trans isomerization of unsaturated fatty acids: Cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl. Environ. Microbiol, 63:4292 297.

    PubMed  CAS  Google Scholar 

  47. Huijberts, G., de Rijk, T., de Waard, P., and Eggink, G., 1994,13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J. Bacteriol, 176:1661–1666

    PubMed  CAS  Google Scholar 

  48. Issartel, J.R, Koronakis, V, and Hughes, C., 1991, Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature, 351:759–761.

    Article  PubMed  CAS  Google Scholar 

  49. Jacques, N.A., 1981. Studies on cyclopropane fatty acid synthesis. Correlation between the state of reduction of respiratory components and the accumualtion of methylene hexadecanoic acid acid by Pseudomonas denitrificans. Biochim. Biophys. Acta, 665:270–282

    Article  PubMed  CAS  Google Scholar 

  50. Jacques, N.A. and Hunt, A., 1980, Studies on cyclopropane fatty acid synthesis. Efect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans. Biochim. Biophys. Acta, 619:453–470.

    Article  PubMed  CAS  Google Scholar 

  51. Junker, F. and Ramos, J.L., 1999, Involvement of a cis/trans isomerase Cti in solvent resistance of Pseudomonasputida DOT-TIE. J. Bacteriol., 181:5693–5700.

    PubMed  CAS  Google Scholar 

  52. Kawai, Y., Yano, I., Kaneda, K., and Yabuuchi, E., 1988, Ornithine-containing lipids of some Pseudomonas species. Eur. J. Biochem., 175:633–641.

    Article  PubMed  CAS  Google Scholar 

  53. Kearns, D.B., Robinson, J., and Shimkets, L.J., 2001, Pseudomonas aeruginosa exhibits directed twitching motility up phosphoethanolamine gradients. J. Bacteriol., 183:763–767.

    Article  PubMed  CAS  Google Scholar 

  54. Keweloh, H. and Heipieper, HJ., 1996, Trans unsaturated fatty acids in bacteria. Lipids, 31:129–137.

    Article  PubMed  CAS  Google Scholar 

  55. Kremer, L., Douglas, J.D., Baulard, A.R., Morehouse, C., Guy, M.R. et al., 2000, Thiolactomycin and related analogues as novel antimycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem., 275:16857–16864.

    Article  PubMed  CAS  Google Scholar 

  56. Kutchma, A.J., Hoang, T.T., and Schweizer, H.P., 1999, Characterization of a Pseudomonas aeruginosa fatty acid biosynthetic gene cluster: Purification of acyl carrier protein (ACP) and malonyl-coenzyme A:ACP transacylase (FabD). J. Bacteriol., 181:5498–5504.

    PubMed  CAS  Google Scholar 

  57. Laue, B.E., Jiang, Y, Chhabra, S.R., Jacob, S., Stewart, G.S., Hardman, A., Downie, J.A., O’Gara, F., and Williams, P., 2000, The biocontrol strain Pseudomonas fluorescens Fl13 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative homoserine lactone synthase. Microbiology, 146:2469–2480.

    PubMed  CAS  Google Scholar 

  58. Li, X.-Z., Zhang, L., and Poole, K., 1998, Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J. Bacteriol., 180:2987–2991.

    PubMed  CAS  Google Scholar 

  59. Loffeld, B., and Keweloh, H., 1996, cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids, 31:811–815.

    Article  PubMed  CAS  Google Scholar 

  60. Lopez-Lara, I.M. and Geiger, O., 2001, Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J. Biotechnol., 91:211–221.

    Article  PubMed  CAS  Google Scholar 

  61. Madison, L.L. and Huisman, G.W., 1999, Metabolic engineering of poly(3-hydroxy-alkanoates): From DNA to plastic. Mol. Biol. Rev., 63:21–53.

    CAS  Google Scholar 

  62. McMurry, L.M., Oethinger, M., and Levy, S.B., 1998, Triclosan targets lipid synthesis. Nature, 394:531–532.

    Article  PubMed  CAS  Google Scholar 

  63. Miller, M.B. and Bassler, B.L., 2001, Quorum sensing in bacteria. Annu. Rev. Microbiol., 55:165–199.

    Article  PubMed  CAS  Google Scholar 

  64. Miller, R.M., 1995. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspect, 103(Suppl.):59–62.

    PubMed  CAS  Google Scholar 

  65. Miyakawa, S., Suzuki, K., Noto, T., Harada, Y, and Okazaki, H., 1982, Thiolactomycin, a new antibiotic. IV Biological properties and chemotherapeutic activity in mice. J. Antibiot., 35:411–419.

    Article  PubMed  CAS  Google Scholar 

  66. Mohan, S. and Raetz, C.R.H., 1994, Endotoxin biosynthesis in Pseudomonas aeruginosa: Enzymatic incorporation of laurate before 3-deoxy-D-manno-octulosonnate. J. Bacteriol., 176:6944–6951.

    PubMed  CAS  Google Scholar 

  67. More, M.I., Finger, D., Stryker, J.L., Fuqua, C., Eberhard, A., and Winans, S.C., 1996, Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science, 272:1655–1658

    Article  PubMed  CAS  Google Scholar 

  68. Moss, C.W. and Dees, S.B., 1976, Cellular fatty acids and metabolic products of Pseudomonas species obtained from clinical specimens. J. Clin. Microbiol., 4:492–502.

    PubMed  CAS  Google Scholar 

  69. Moss, C.W. and Dees, S.B. 1975, Identification of microorganisms by gas chromatographic-mass spectrometric analysis of cellular fatty acids. J. Chromatogr., 112:594–604.

    PubMed  CAS  Google Scholar 

  70. Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, VA.P., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, D., Peterson, J., Khouri, H., Hance, I., Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, L., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D, Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J., Timmis, K.N., Duesterhoeft, A., Tuemmler, B., and Fraser, CM., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.

    Article  PubMed  CAS  Google Scholar 

  71. Nishida, I., Kawaguchi, A., and Yamada, M., 1986, Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. J. Biochem., 99:1447–1454.

    PubMed  CAS  Google Scholar 

  72. Ochsner, U.A., Fiechter, A., and Reiser, J., 1994, Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltrans-ferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem., 269:19787–19795.

    PubMed  CAS  Google Scholar 

  73. Ochsner, U.A., Koch, A.K., Fiechter, A., and Reiser, J., 1994, Isolation and characterization of a regulatory gene affecting rhamnolipid synthesis in Pseudomonas aeruginosa. J. Bacteriol., 176:2044–2054

    PubMed  CAS  Google Scholar 

  74. Oishi, H., Noto, T., Sasaki, H., Suzuki, K., Hayashi, T., Okazaki, H., Ando, K., and Sawada, ML, 1982, Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J. Antibiot., 35:391–395.

    Article  PubMed  CAS  Google Scholar 

  75. Omura, S., 1976, The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol. Rev., 40:681–697.

    PubMed  CAS  Google Scholar 

  76. Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan, J.E., and Greenberg, E.P., 1999, Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA, 98:4360–4365.

    Article  Google Scholar 

  77. Passador, L., Cook, J.M., Gambello, M.J., Rust, L., and Iglewski, B.H., 1993, Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 260:1127–1130.

    Article  PubMed  CAS  Google Scholar 

  78. Payne, DJ, Miller, W.H, Berry, V, Brosky, J., Burgess, W.J., Chen, E, DeWolf, Jr., WE, Fosberry, A.P, Greenwood, R, Head, M.S., Heerding, D.A, Janson, C.A, Jaworski, D.D., Keller, P.M., Manley, P.J., Moore, T.D, Newlander, K.A, Pearson, S, Polizzi, B.J, Qiu, X, Rittenhouse, S.F, Slater-Radosti, C., Salyers, K.L, Seefeld, M.A, Smyth, M.G, Takata, D.T, Uzinskas, I.N, Vaidya, K, Wallis, N.G, Winram, S.B, Yuan, C.C.K, and Huffman, W.F., 2002, Discovery of a novel and potent class of Fabl-directed antibacterial agents. Antimicrob. Agents Chemother, 46:3118–3124.

    Article  PubMed  CAS  Google Scholar 

  79. Pearson, J, Gray, K, Passador, L, Tucker, K, Eberhard, A, Iglewski, B, and Greenberg, E, 1994, Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA., 91:197–201.

    Article  PubMed  CAS  Google Scholar 

  80. Pearson, J, Passador, L, Iglewski, B, and Greenberg, E. 1995, A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA., 92:1490–1494.

    Article  PubMed  CAS  Google Scholar 

  81. Pedrotta, V and Witholt, B., 1999, Isolation and characterization of the cis-trans unsaturated fatty acid isomerase of Pseudomonas oleovorans. J. Bacteriol., 181:3256–3261.

    PubMed  CAS  Google Scholar 

  82. Pinkart, H.C. and White, D.C., 1997, Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J. Bacteriol., 179:4219–4226

    PubMed  CAS  Google Scholar 

  83. Qi, Q, Steinbuechel, A, and Rehm, B.H., 2000, In vitro synthesis of poly(3-hydroxydecanoate): Purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaCl and PhaC2 from Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 54:37–43.

    Article  PubMed  CAS  Google Scholar 

  84. Raetz, C.R.H. and Whitfield, C., 2002, Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 71:635–700.

    Article  PubMed  CAS  Google Scholar 

  85. Rahim, R., Ochsner, U.A., Olvera, C., Graninger, M., Messner, P., Lam, J.S., and Soberon-Chavez. G., 2001, Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol. Microbiol., 40:708–718.

    Article  PubMed  CAS  Google Scholar 

  86. Ramos, J.L., Duque, E., Gallegos, M.T., Godoy, P., Ramos-Gonzalez, M.I., Rojas, A., Teran, W, and Segura, A., 2002, Mechanisms of solvent tolerance in Gram-negative bacteria. Annu. Rev. Microbiol., 56:743–768.

    Article  PubMed  CAS  Google Scholar 

  87. Ramos, J.L., Duque, E., Rodriguez-Herva, J.-X, Godoy, P., Haidour, A., Reyes, F, and Fernandez-Barrero, A., 1997, Mechanisms for solvent tolerance in bacteria. J. Biol. Chem., 272:3887–3890.

    Article  PubMed  CAS  Google Scholar 

  88. Rehm, B.H., Krueger, N., and Steinbüchel, A., 1998, A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J. Biol. Chem., 273:24044–24051.

    Article  PubMed  CAS  Google Scholar 

  89. Rehm, B.H., Mitsky, T.A., and Steinbüchel, A., 2001, Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: Establishment of the transacylase (PhaG)-mediated pathway for PHA synthesis in Escherichia coli. Appl. Environ. Microbiol., 67:3102–3109.

    Article  PubMed  CAS  Google Scholar 

  90. Rehm, B.H. and Steinbüchel, A., 1999, Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol., 13:83–88.

    Google Scholar 

  91. Ren, Q., Sierro, N., Witholt, B., and Kessler, B., 2000, FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxylalkanoate biosynthesis in Escherichia coli. J. Bacteriol., 182:2978–2981.

    Article  PubMed  CAS  Google Scholar 

  92. Rocchetta, H.L., Burrows, L.L., and Lam, J.S., 1999, Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev., 63:523–553.

    PubMed  CAS  Google Scholar 

  93. Schweizer, H.P., 1998, Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: Application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob. Agents Chemother., 42:394–398.

    PubMed  CAS  Google Scholar 

  94. Slayden, R.A., Lee, R.E., and Barry, C.E., 2000, Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol. Microbiol., 38:514–525.

    Article  PubMed  CAS  Google Scholar 

  95. Smith, R.S. and Iglewski, B.H., 2003, P. aeruginosa quorum-sensing and virulence. Curr. Opin. Microbiol., 6:56–60.

    Article  PubMed  CAS  Google Scholar 

  96. Stanghellini, M.E. and Miller, R.M., 1997, Biosurfactants: Their identity and potential efficiency in the biological control of zoosporic plant pathogens. Plant Dis., 81:4–12.

    Article  CAS  Google Scholar 

  97. Steidle, A., Allesen-Holm, M., Riedel, K. Berg, G., Gibskov, M., Molin, S., and Eberl, L. 2002, Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl. Environ. Microbiol., 68:6371–6382.

    Article  PubMed  CAS  Google Scholar 

  98. Stover, C.K., Pham, X.-Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.,L., Hufhagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Spencer, D. Wong, G.K.-S., Wu, Z., Paulsen, LT., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S., and Olson, M.V 2000, Complete genome sequence of Pseudomonas aeruginosa, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  99. Timm, A. and Steinbüchel. A., 1992, Cloning and molecular analysis of the poly(3-hydroxyalkanoates acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209:15–30.

    Article  PubMed  CAS  Google Scholar 

  100. Val, D.L. and Cronan, J.E. 1998, In vivo evidence that S-adenosylmethionine and fatty acid intermediates are the substrates for the Luxl family of autoinducer synthases. J. Bacteriol., 180:2644–2651.

    PubMed  CAS  Google Scholar 

  101. Wang, A. Y. and Cronan, J.E., 1994, The growth phase-dependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an RpoS(KatF)-dependent promoter plus enzyme instability. Mol. Microbiol., 11:1009–1017.

    Article  PubMed  Google Scholar 

  102. Wang, A.Y., Grogan, D.W., and Cronan, J.E. 1992, Cyclopropane fatty acid synthase of Escherichia coli: Deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry, 31:11020–11028.

    Article  PubMed  CAS  Google Scholar 

  103. Watson, W.T., Minogue, T.D., Val, D.L., Beck Von Bodman, S., and Churchill, M.E.A., 2002, Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol. Cell, 9:685–694.

    Article  PubMed  CAS  Google Scholar 

  104. Wilderman, P.J., Vasil, A.I., Martin, WE., Murphy, R.C., and Vasil, M.L., 2002, Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidyl-choline synthase pathway. J. Bacteriol., 184:4792–4799.

    Article  PubMed  CAS  Google Scholar 

  105. Winder, F., 1982, Mode of action of antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. In C. Ratledge and J.L., Stanford (eds), The Biology of Mycobacteria. Vol. 1, pp. 354–441, Academic Press, San Diego.

    Google Scholar 

  106. Wood, D.W., Gong, F., Daykin, M.M., Williams, P., and Pierson, L.S. 1997, N-acyl-homoserine lactone-mediated regulation of phenazine gene expression in Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J. Bacteriol., 179:7663–7670.

    PubMed  CAS  Google Scholar 

  107. Wyckoff, T.J.O., Lin, S., Cotter, R.J., Dotson, G.D., and Raetz, C.R.H. 1998, Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J. Biol. Chem., 273:32369–32372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schweizer, H.P. (2004). Fatty Acid Biosynthesis and Biologically Significant Acyl Transfer Reactions in Pseudomonads. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics