Skip to main content
Log in

cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity inPseudomonas putida P8

  • Articles
  • Published:
Lipids

Abstract

Exponentially growing cells ofPseudomonas putida had an increased ratio of saturated to unsaturated fatty acids in response to increased growth temperatures. Resting cells in which fatty acid biosynthesis was stopped reacted to a thermal increase by convertingcis-monounsaturated fatty acids totrans isomers.cis/trans isomerization of up to 60% of the unsaturated fatty acids was also activated by alcohols of different chain length. Their effective concentrations apparently depended on the lipophilic character of the alcohols. Also, a salt shock caused by the addition of NaCl resulted in the production oftrans fatty acids. However, cells that were adapted to growth media of high osmolarity synthesized cyclopropane fatty acids instead oftrans fatty acids. Activity ofcis/trans-isomerase was dependent on the growth phase and was significantly higher during logarithmic growth than during the stationary phase. The results of this study agree with the hypothesis that the isomerization ofcis intotrans unsaturated fatty acids is an emergency action of cells ofP. putida to adapt membrane fluidity to drastic changes of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cronan, J.E. (1968) Phospholipid Alterations During Growth ofEscherichia coli, J. Bacteriol. 95, 2054–2061.

    PubMed  CAS  Google Scholar 

  2. Russell, N.J. (1984) Mechanisms of Thermal Adaptation in Bacteria: Bluerprints for Survival,Trends Biochem. Sci. 9, 108–112.

    Article  CAS  Google Scholar 

  3. Shinitzky, M. (1984) Membrane Fluidity and Cellular Functions, inPhysiology of Membrane Fluidity (Shinitzky, M., ed.) Vol. II, pp. 1–52. CRC Press, Boca Raton.

    Google Scholar 

  4. Suutari, M., and Laakso, S. (1994) Microbial Fatty Acids and Thermal Adaptation,Crit. Rev. Micobiol. 20, 285–328.

    CAS  Google Scholar 

  5. Keweloh, H., and Heipieper, H.J. (1996)Trans Unsaturated Fatty in Bacteria,Lipids 31, 129–137.

    PubMed  CAS  Google Scholar 

  6. Henderson, R.J., Millar, R.M., Sargent, J.R., and Jostensen, J.P. (1993)Trans-Monoenoic and Polyunsaturated Fatty Acids in Phospholipids of aVibrio Species of Bacterium in Relation to Growth Conditions,Lipids 28, 389–396.

    PubMed  CAS  Google Scholar 

  7. Hamamoto, T., Takata, N., Kudo, T., and Horikoshi, K. (1994) Effect of Temperature and Growth Phase on Fatty Acid Composition of the PsychrophilicVibrio sp. Strain No. 5710,FEMS Microbiol. Lett 119, 77–81.

    Article  CAS  Google Scholar 

  8. Okuyama, H., Okajima, N., Sasaki, S., Higashi, S., and Murata, N. (1991) TheCis/Trans Isomerization of the Double Bond of a Fatty Acid as a Strategy for Adaptation to Changes in Ambient Temperature in the Psychrophilic Bacterium,Vibrio sp. Strain ABE-1,Biochim. Biophys. Acta 1084, 13–20.

    PubMed  CAS  Google Scholar 

  9. Heipieper, H.J., Diefenbach, R., and Keweloh, H. (1992) Conversion ofCis Unsaturated Fatty Acids toTrans, a Possible Mechanism for the Protection of Phenol-DegradingPseudomonas putida P8 from Substrate Toxicity,Appl. Environ. Microbiol. 58, 1847–1852.

    PubMed  CAS  Google Scholar 

  10. Weber, F.J., Isken, S., and de Bont, J.A.M. (1994)Cis/Trans Isomerization of Fatty Acids as a Defense Mechanism ofPseudomonas putida Strains to Toxic Concentrations of Toluene,Microbiology 140, 2013–2017.

    PubMed  CAS  Google Scholar 

  11. Diefenbach, R., Heipieper, H.J., and Keweloh, H. (1992) The Conversion ofCis intoTrans Unsaturated Fatty Acids inPseudomonas putida P8: Evidence for a Role in the Regulation of Membrane Fluidity.Appl. Microbiol. Biotechnol 38, 382–387.

    Article  CAS  Google Scholar 

  12. Heipieper, H.J., and De Bont, J.A.M. (1994) Adaptation ofPseudomonas putida S12 to Ethanol and Toluene at the Level of Fatty Acid Composition of Membranes,Appl. Environ. Microbiol. 60, 4440–4444.

    PubMed  CAS  Google Scholar 

  13. Morita, N., Shibahara, A., Yamamoto, K., Shinkai, K., Kajimoto, G., and Okuyama, H. (1993) Evidence forCis-Trans Isomerization of a Double Bond in the Fatty Acids of the Psychrophilic BacteriumVibrio sp. Strain ABE-1,J. Bacteriol. 175, 916–918.

    PubMed  CAS  Google Scholar 

  14. Diefenbach, R., and Keweloh, H. (1994) Synthesis ofTrans Unsaturated Fatty Acids inPseudomonas putida P8 by Direct Isomerization of the Double Bond of Lipids,Arch. Microbiol. 162, 120–125.

    Article  PubMed  CAS  Google Scholar 

  15. Bettmann, H., and Rehm, H.J. (1984) Degradation of Phenol by Polymer Entrapped Microorganisms,Appl. Microbiol. Biotechnol. 20, 285–290.

    Article  CAS  Google Scholar 

  16. Pfennig, W., and Lippert, K.D. (1966) Ueber Das Vitamin B12-Beduerfnis Phototropher Schwefelbakterien,Arch. Microbiol. 55, 245–256.

    CAS  Google Scholar 

  17. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification,Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  18. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol,J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  19. Sinensky, M. (1974) Homeoviscous Adaptation—A Homeostatic Process That Regulates the Viscosity of Membrane Lipids inEscherichia coli, Proc. Natl. Acad. Sci. USA 71, 522–525.

    Article  PubMed  CAS  Google Scholar 

  20. Ingram, L.O. (1976) Adaptation of Membrane Lipids to Alcohols,J. Bacteriol. 125, 670–678.

    PubMed  CAS  Google Scholar 

  21. Keweloh, H., Diefenbach, R., and Rehm, H.J. (1991) Increase of Phenol Tolerance ofEscherichia coli by Alterations of the Fatty Acid Composition of the Membrane Lipids,Arch. Microbiol. 157, 49–53.

    Article  PubMed  CAS  Google Scholar 

  22. Heipieper, H.J., Weber, F.J., Sikkema, J., Keweloh, H., and De Bont, J.A.M. (1994) Mechanisms of Resistance of Whole Cells to Toxic Organic Solvents,Trends Biotechnol. 12, 409–415.

    Article  CAS  Google Scholar 

  23. Sikkema, J., De Bont, J.A.M., and Poolman, B. (1995) Mechanisms of Membrane Toxicity of Hydrocarbons,Microbiol. Rev. 59, 201–222.

    PubMed  CAS  Google Scholar 

  24. Russell, N.J. (1989) Adaptive Modifications in Membranes of Halotolerant and Halophilic Microorganisms,J. Bioenerget. Biomembr. 21, 93–113.

    Article  CAS  Google Scholar 

  25. Monteoliva-Sanchez, M., Ramos-Cormenzana, A., and Russell, N.J. (1993) The Effect of Salinity and Compatible Solutes on the Biosynthesis of Cyclopropane Fatty Acids inPseudomonas halosaccharolytica, J. Gen. Microbiol. 139, 1877–1884.

    CAS  Google Scholar 

  26. Kuchta, T., and Russell, N.J. (1994) Glycinebetaine Stimulates, But NaCl Inhibits, Fatty Acid Biosynthesis in the Moderately Halophilic Eubacterium HX,Arch. Microbiol. 161, 234–238.

    CAS  Google Scholar 

  27. Macdonald, P.M., Sykes, B.D., and Mcelhaney, R.N. (1985) 19F Nuclear Magnetic Resonance Studies of Lipid Fatty Acyl Chain Order and Dynamics inAcholeplasma laidlawii B Membranes. Orientational Order in the Presence of Positional Isomers ofTrans-Octadecenoic Acid,Biochemistry 24, 2237–2245.

    Article  CAS  Google Scholar 

  28. Magnuson, K., Jackowski, S., Rock, C.O., and Cronan, J.E. (1993) Regulation of fatty Acid Biosynthesis inEscherichia coli, Microbiol. Rev. 57, 522–542.

    PubMed  CAS  Google Scholar 

  29. Golden, N.G., and Powell, G.L. (1972) Stringent and Relaxed Control of Phospholipid Metabolism inEscherichia coli, J. Biol. Chem. 247, 6651–6658.

    PubMed  CAS  Google Scholar 

  30. Jiang, P., and Cronan, J.E. (1994) Inhibition of Fatty Acid Synthesis inEscherichia coli in the Absence of Phospholipid Synthesis and Release of Inhibition by Thioesterase Action,J. Bacteriol. 176, 2814–2821.

    PubMed  CAS  Google Scholar 

  31. Guckert, J.B., Hood, M.A., and White, D.C. (1986) Phospholipid Ester-Linked Fatty Acid Profile Changes During Nutrient Deprivation ofVibrio cholerae: Increases in theTrans/Cis Ratio and Proportions of Cyclopropyl Fatty Acids,Appl. Environ. Microbiol. 52, 794–801.

    PubMed  CAS  Google Scholar 

  32. Gitter, B., Diefenbach, R., Keweloh, H., and Riesenberg, D. (1995) Influence of Stringent and Relaxed Response on Excretion of Recombinant Proteins and Fatty Acid Composition inEscherichia coli, Appl. Microbiol. Biotechnol. 43, 89–92.

    Article  PubMed  CAS  Google Scholar 

  33. Nichols, D.S., Mcmeekin, T.A., and Nichols, P.D. (1994) Manipulation of Polyunsaturated, Branched-Chain andTrans-Fatty Acid Production inShewanella putrefaciens Strain ACAM 342,Microbiology 140, 577–584.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Loffeld, B., Keweloh, H. cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity inPseudomonas putida P8. Lipids 31, 811–815 (1996). https://doi.org/10.1007/BF02522976

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522976

Keywords

Navigation