Skip to main content
Log in

Trans unsaturated fatty acids in bacteria

  • Review
  • Published:
Lipids

Abstract

The occurrence oftrans unsaturated fatty acids as by-products of fatty acid transformations carried out by the obligate anaerobic ruminal microflora has been well known for a long time. In recent years, fatty acids withtrans configurations also have been detected in the membrane lipids of various aerobic bacteria. Besides several psychrophilic organisms, bacteria-degrading pollutants, such asPseudomonas putida, are able to synthesize these compoundsde novo. In contrast to thetrans fatty acids formed by rumen bacteria, the membrane constituents of aerobic bacteria are synthesized by a direct isomerization of the complementarycis configuration of the double bond without a shift of the position. This system of isomerization is located in the cytoplasmic membrane. The conversion ofcis unsaturated fatty acids totrans changes the membrane fluidity in response to environmental stimuli, particularly where growth is inhibited due to the presence of high concentrations of toxic substances. Under these conditions, lipid synthesis also stops so that the cells are not able to modify their membrane fluidity by any other mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification,Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  2. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol,J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  3. Bowman, J.P., Skerratt, J.H., Nichols, P.D., and Sly, S.I. (1991) Phospholipid Fatty Acid and Lipopolysaccharide Fatty Acid Signature Lipids in Methane-Utilizing Bacteria,FEMS Microbiol. Ecology 85, 15–22.

    Article  CAS  Google Scholar 

  4. Guckert, J.B., Ringelberg, D.B., White, D.C., Hanson, R.S., and Bratina, B.J. (1991) Membrane Fatty Acids as Phenotypic Markers in the Polyphasic Taxonomy of Methylotrophs within Proteobacteria,J. Gen. Microbiol. 137, 2631–2641.

    PubMed  CAS  Google Scholar 

  5. Caudales, R., and Wells, J.M. (1991) Differentiation of Free-LivingAnabaena andNostoc Cyanobacteria on the Basis of Fatty Acid Composition,Int. J. Syst. Bacteriol. 42, 246–251.

    Article  Google Scholar 

  6. Ringelberg, D.B., Townsend, G.T., de Weerd, K.A., Suflita, J.M., and White, D.C. (1994) Detection of the Anaerobic Dechlorinating MicroorganismDesulfomonile tiedjei in Environmental Matrices by Its Signature Lipopolysaccharide Branched-Long-Chain Hydroxy Fatty Acids,FEMS Microbiol. Ecology 14, 9–18.

    Article  CAS  Google Scholar 

  7. Zelles, L., and Bai, Q.V. (1994) Fatty Acid Pattern of Phospholipids and Lipopolysaccharides in Environmental Samples,Chemosphere 28, 391–411.

    Article  CAS  Google Scholar 

  8. Gambacorta, A., Trincone, A., Nicolaus, B., Lama, L., and de Rosa, M. (1994) Unique Features of Lipids of Archaea,System Appl. Microbiol. 16, 518–527.

    CAS  Google Scholar 

  9. Hamamoto, T., Takata, N., Kudo, T., and Horikoshi, K. (1994) Effect of Temperature and Growth Phase on Fatty Acid Composition of the PsychrophilicVibrio sp. Strain no. 5710,FEMS Microbiol. Lett. 119, 77–81.

    Article  CAS  Google Scholar 

  10. Henderson, R.J., Millar, R.M., Sargent, J.R., and Jostensen, J.P. (1993)Trans-Monoenoic and Polyunsaturated Fatty Acids in Phospholipids of aVibrio Species of Bacterium in Relation to Growth Conditions,Lipids 28, 389–396.

    PubMed  CAS  Google Scholar 

  11. Nichols, D.S., McMeekin, T.A., and Nichols, P.D. (1994) Manipulation of Polyunsaturated, Branched-Chain andTrans-Fatty Acid Production inShewanella putrefaciens Strain ACAM 342,Microbiology 140, 577–584.

    CAS  Google Scholar 

  12. Ratledge, S., and Wilkinson, S.G. (1988)Microbial Lipids, Vols. 1 and 2. Academic Press, New York.

    Google Scholar 

  13. Makula, R.A. (1978) Phospholipid Composition of Methane-Utilizing Bacteria,J. Bacteriol. 134, 771–777.

    PubMed  CAS  Google Scholar 

  14. Nichols, P.D., Smith, G.A., Antworth, C.P., Hanson, R.S., and White, D.C. (1985) Phospholipid and Lipopolysaccharide Normal and Hydroxy Fatty Acids as Potential Signatures for Methane-Oxidizing Bacteria,FEMS Microbiol. Ecology 31, 327–335.

    Article  CAS  Google Scholar 

  15. Mackie, R.I., White, B.A., and Bryant, M.P. (1991) Lipid Metabolism in Anaerobic Ecosystems,CRC Crit. Rev. Microbiol. 17, 449–479.

    CAS  Google Scholar 

  16. Eyssen, H., and Verhulst, A. (1984) Biotransformation of Linoleic Acid and Bile Acids byEubacterium lentum, Appl. Environ. Microbiol. 47, 39–43.

    PubMed  CAS  Google Scholar 

  17. Verhulst, A., Parmentier, G., Janssen, G., Asselberghs, S., and Eyssen, H. (1986) Biotransformation of Unsaturated Long-Chain Fatty Acids byEubacterium lentum, Appl. Environ. Microbiol. 51, 532–538.

    PubMed  CAS  Google Scholar 

  18. Emken, E.A. (1984) Nutrition and Biochemistry ofTrans and Positional Fatty Acid Isomers in Hydrogenated Oils,Ann. Rev. Nutr. 4, 339.

    Article  CAS  Google Scholar 

  19. Pettersen, J., and Opstvedt, J. (1992)Trans Fatty Acids. 5. Fatty Acid Composition of Lipids of the Brain and Other Organs in Suckling Piglets,Lipids 27, 761.

    PubMed  CAS  Google Scholar 

  20. Jones, D. (1993)Trans-Fatty Acids and Dieting,Lancet 341, 1093.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, Z.-Y., Pelletier, G., Hollywood, R., and Ratnayke, W.M.N. (1995)Trans Fatty Acid Isomers in Canadian Human Milk,Lipids 30, 15–21.

    PubMed  CAS  Google Scholar 

  22. Willett, W.C., Stampfer, M.J., Manson, J.E., Colditz, G.A., Speizer, F.E., Rosner, B.A., Sampson, L.A., and Hennekens, C.H. (1993) Intake ofTrans-Fatty Acids and Risk of Coronary Heart Disease Among Women,Lancet 341, 581–585.

    Article  PubMed  CAS  Google Scholar 

  23. Katan, M.B., and Mensink, R.P. (1992) Isomeric Fatty Acids and Serum Lipoprotein,Nutrition Reviews, 50, 46–48.

    Article  PubMed  CAS  Google Scholar 

  24. Mensink, R.P., and Katan, M.B. (1990) Effect of DietaryTrans Fatty Acids on High-Density and Low-Density Lipoprotein Cholesterol Levels in Health Subjects,New England Journal of Medicine 323, 439–445.

    Article  PubMed  CAS  Google Scholar 

  25. Seltzer, S. (1972)Cis-Trans Isomerization, inThe Enzymes (Boyer, P.D., ed.) Vol. 6, pp. 381–406, Academic Press, New York.

    Google Scholar 

  26. Gillam, F.T., Johns, R.B., Verheyen, T.V., Volkman, J.K., and Bavor, H.J. (1981)Trans-Monounsaturated Acids in Marine Bacterial Isolate,Appl. Environ. Microbiology 41, 849–856.

    Google Scholar 

  27. Guckert, J.B., Ringelberg, D.B., and White, D.C. (1987) Biosynthesis ofTrans Fatty Acids from Acetate in the BacteriumPseudomonas atlantica, Can. J. Microbiology 33, 748–754.

    Article  CAS  Google Scholar 

  28. Diefenbach, R., Heipieper, H.J., and Keweloh, H. (1992) The Conversion ofCis- intoTrans-Unsaturated Fatty Acids inPseudomonas putida P8: Evidence for a Role in the Regulation of Membrane Fluidity,Appl. Microbiol. Biotechnol. 38, 382–387.

    Article  CAS  Google Scholar 

  29. Heipieper, H.J., Diefenbach, R., and Keweloh, H. (1992) A Possible Mechanism of the Protection of the Phenol Degrading StrainPseudomonas putida P8 from the Toxicity of the Substrate: The Conversion ofCis- intoTrans-Unsaturated Fatty Acids,Appl. Environ. Microbiol. 58, 1847–1852.

    PubMed  CAS  Google Scholar 

  30. Heipieper, H.J., and de Bont, J.A.M. (1994) Adaptation ofPseudomonas putida S12 to Ethanol and Toluene at the Level of Fatty Acid Composition of Membranes,Appl. Environ. Microbiol. 60, 4440–4444.

    PubMed  CAS  Google Scholar 

  31. Weber, F.J., Isken, S., and de Bont, J.A.M. (1994)Cis/Trans Isomerization of Fatty Acids as a Defense Mechanism ofPseudomonas putida Strains to Toxic Concentrations of Toluene,Microbiology 140, 2013–2017.

    Article  PubMed  CAS  Google Scholar 

  32. Pinkart, H.C., White, D.C., Wolfram, J., and Rodgers, R. (1994) Xylene-Induced Changes in Membrane Structure of Solvent ResistantPseudomonas putida Idaho, in94th General Meeting of The American Society for Microbiology, Abstract book, K-85, p. 290.

  33. Conrad, R.S., Wulf, R.G., and Ankrom, K.A. (1981) Fatty Acids ofPseudomonas aeruginosa Grown on Media Affecting Polymyxin Susceptibility,Curr. Microbiology 5, 231–234.

    Article  CAS  Google Scholar 

  34. Kieft, T.L., Ringelberg, D.B., and White, D.C. (1994) Changes in Ester-Linked Phospholipid Fatty Acid Profiles of Subsurface Bacteria During Starvation and Desiccation in a Porous Medium,Appl. Environ. Microbiol. 60, 3292–3299.

    PubMed  CAS  Google Scholar 

  35. Diefenbach, R. (1993) Mechanismen einer vermehrten Phenoltoleranz bei Bakerien, Ph.D. Thesis, University of Muenster, Muenster, Germany.

    Google Scholar 

  36. Guckert, J.B., Hood, M.A., and White, D.C. (1986) Phospholipid Ester-Linked Fatty Acid Profile Changes During Nutrient Deprivation ofVibrio cholerae: Increases in theTrans/Cis Ratio and Proportions of Cyclopropyl Fatty Acids,Appl. Environ. Microbiol. 52, 794–801.

    PubMed  CAS  Google Scholar 

  37. Hood, M.A., Guckert, J.B., White, D.C., and Deck, F. (1986) Effect of Nutrient Deprivation on Lipid, Carbohydrate, DNA, RNA, and Protein Levels inVibrio cholerae, Appl. Environ. Microbiol. 52, 788–793.

    PubMed  CAS  Google Scholar 

  38. Okuyama, H., Sasaki, S., Higashi, S., and Murata, N. (1990) TheTrans-Unsaturated Fatty Acid in a Psychrophilic Bacterium,Vibrio sp. strain ABE-1,J. Bacteriol. 172, 3515–3518.

    PubMed  CAS  Google Scholar 

  39. Okuyama, H., Okajima, N., Sasaki, S., Higashi, S., and Murata, N. (1991) TheCis/Trans Isomerization of the Double Bond of a Fatty Acid as a Strategy for Adaptation to Changes in Ambient Temperature in the Psychrophilic BacteriumVibrio sp. Strain ABE-1,Biochem. Biophys. Acta 1084, 13–20.

    PubMed  CAS  Google Scholar 

  40. Morita, N., Gotoh, M., Okajima, N., Okuyama, H., Hayashi, H., Higashi, S., and Murata, N. (1992) Both the Anaerobic Pathway and the Aerobic Desaturation Are Involved in the Synthesis of Unsaturated Fatty Acids inVibrio sp. Strain ABE-1,FEBS Lett. 297, 9–12.

    Article  PubMed  CAS  Google Scholar 

  41. Morita, N., Shibahara, A., Yamamoto, K., Shinkai, K., Kajimoto, G., and Okuyama, H. (1993) Evidence forCis-Trans Isomerization of a Double Bond in the Fatty Acids of the Psychrophilic BacteriumVibrio sp. strain ABE-1,J. Bacteriol. 175, 916–918.

    PubMed  CAS  Google Scholar 

  42. Moss, C.W., and Daneshvar, M.I. (1992) Identification of Some Uncommon Monounsaturated Fatty Acids of Bacteria,J. Clin. Microbiology 30, 2511–2512.

    CAS  Google Scholar 

  43. Lamberto, M., and Ackman, R.G. (1994) Confirmation by Gas Chromatography/Mass Spectrometry ot Two UnusualTrans-3-Monoethylenic Fatty Acids from the Nova Scotian SeaweedsPalmaria palmata andChororidrus crispus, Lipids 29, 441–444.

    PubMed  CAS  Google Scholar 

  44. Ohnishi, M., and Thompson, G.A. (1991) Biosynthesis of the UniqueTrans-Delta3-Hexadecenoic Acid Component of Chloroplast Phosphatidylglycerol: Evidence Concerning its Site and Mechanisms of Formation,Arch. Biochem. Biophys. 288, 591–599.

    Article  PubMed  CAS  Google Scholar 

  45. Silbert, D.F., Ladenson, R.C., and Honegger, J.L. (1973) The Unsaturated Fatty Acid Requirement inEscherichia coli. Temperature Dependence and Total Replacement by Branched-Chain Fatty Acids,Biochem. Biophys. Acta 311, 349–361.

    PubMed  CAS  Google Scholar 

  46. Silbert, D.F., Ruch, F., and Vagelos, P.R. (1988) Fatty Acid Replacements in a Fatty Acid Auxotroph ofEscherichia coli, J. Bacteriol. 95, 1658–1665.

    Google Scholar 

  47. Cronan, J.E., and Gelman, E.P. (1975) Physical Properties of Membrane Lipids: Biological Relevance and Regulation,Bacteriol. Reviews 39, 232–256.

    CAS  Google Scholar 

  48. Ingram, L.O. (1990) Ethanol Tolerance in Bacteria,Crit. Rev. Biotechnol. 9, 305–320.

    PubMed  CAS  Google Scholar 

  49. de Veaux, L.C., Cronan, J.E., and Smith, T.L. (1989) Genetic and Biochemical Characterization of a Mutation (fatA) That AllowsTrans Unsaturated Fatty Acids to Replace the EssentialCis Unsaturated Fatty Acids ofEscherichia coli, J. Bacteriol. 171, 1562–1568.

    Google Scholar 

  50. Magnuson, K., Jackowski, S., Rock, C.O., and Cronan, Jr., J.E. (1993) Regulation of Fatty Acid Biosynthesis inEscherichia coli, Microbiol. Reviews 57, 522–542.

    CAS  Google Scholar 

  51. Russell, N.J. (1984) Mechanisms of Thermal Adaptation in Bacteria: Blueprints for Survival,Trends Biochem. Sci. 9, 108–112.

    Article  CAS  Google Scholar 

  52. Grau, R., and de Mendoza, D. (1993) Regulation of the Synthesis of Unsaturated Fatty Acids by Growth Temperature inBacillus subtilis, Mol. Microbiol. 8, 535–542.

    Article  PubMed  CAS  Google Scholar 

  53. Foot, M., Jeffcoat, R., and Russell, N.J. (1993) Some Properties, Including the Substrate,In Vivo, of the Delta9-Desaturase inMicrococcus cryophilus, Biochem. J. 209, 345–353.

    Google Scholar 

  54. Cronan, J.E., and Rock, C.O. (1987) Biosynthesis of Membrane Lipids, in Escherichia coliand Salmonella typhimurium cellular and Molecular Biology (Neidhardt F.C., ed.) Vol. 1, pp. 474–497, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  55. Diefenbach, R., and Keweloh, H. (1994) Synthesis ofTrans Unsaturated Fatty Acids inPseudomonas putida P8 by Direct Isomerization of the Double Bond of Lipids,Arch. Microbiol. 162, 120–125.

    Article  PubMed  CAS  Google Scholar 

  56. Henderson, R.J., Millar, R.M., and Sargent, J.R. (1995) Effect of Growth Temperature on the Positional Distribution of Eicosapentaenoic Acid andTrans Hexadecenoic Acid in the Phospholipids of aVibrio species of Bacterium,Lipids 30, 181–185.

    PubMed  CAS  Google Scholar 

  57. Heipieper, H.J., Weber, F.J., Sikkema, J., Keweloh, H., and de Bont, J.A.M. (1994) Mechanisms Behind Resistance of Whole Cells to Toxic Organic Solvents,Trends Biotechnol. 12, 409–415.

    Article  CAS  Google Scholar 

  58. Sikkema, J., de Bont, J.A.M., and Poolman, B. (1995) Membrane Toxicity of Cyclic Hydrocarbons,Microbiol. Rev. 59, 201–222.

    PubMed  CAS  Google Scholar 

  59. Sikkema, J., Weber, F.J., Heipieper, H.J., and de Bont, J.A.M. (1994) Cellular Toxicity of Lipophilic Compounds: Mechanisms, Implications, and Adaptations,Biocatalysis 10, 113–122.

    CAS  Google Scholar 

  60. Heipieper, H.J., Keweloh, H., and Rehm, H.J. (1991) Influence of Phenols on Growth and Membrane Permeability of Free and ImmobilizedEscherichia coli, Appl. Environ. Microbiol. 57, 1213–1217.

    PubMed  CAS  Google Scholar 

  61. Kitagawa, S., Orinaka, M., and Hiratan, H. (1993) Depth-Dependent Change in Membrane Fluidity by Phenolic Compounds in Bovine Platelets and Its Relationship with Their Effects on Aggregation and Adenylate Cyclase Activity,Biochim. Biophys. Acta 1179, 277–282.

    Article  PubMed  CAS  Google Scholar 

  62. Melchior, D.L. (1982) Lipid Phase Transitions and Regulation of Membrane Fluidity in Prokaryotes, inCurrent Topics in Membrane and Transport (Razin, S., and Rottem, S., eds.) Vol. 17, pp. 263–316, Academic Press, New York.

    Google Scholar 

  63. Carruthers, A., and Melchior, D.L. (1983) Studies on the Relationship Between Bilayer and Water Permeability and Bilayer Physical State,Biochemistry 22, 5797–5807.

    Article  CAS  Google Scholar 

  64. Melchior, D.L., and Carruthers, A. (1983) Studies on the Relationship Between Bilayer and Water Permeability and Bilayer Physical State,Biochemistry 22, 5808–5814.

    Article  Google Scholar 

  65. Inoue, A., and Horikoshi, K. (1989) APseudomonas Thrives in High Concentrations of Toluene,Nature 338 264–266.

    Article  CAS  Google Scholar 

  66. Cruden, D.L., Wolfram, J.H., Rogers, R.D. and Gibson, D.T. (1992) Physiological Properties of aPseudomonas Strain Which Grows with p-Xylene in a Two-Phase (Organic-Aqueous) Medium,Appl. Environ. Microbiol. 58, 2723–2729.

    PubMed  CAS  Google Scholar 

  67. Weber, F.J., Ooijkaas, L.P., Schemen, R.M.W., Hartmans, S., and de Bont, J.A.M. (1993) Adaptation ofPseudomonas putida to High Concentrations of Styrene and Other Organic Compounds,Appl. Environ. Microbiol. 59, 3502–3504.

    PubMed  CAS  Google Scholar 

  68. Cevc, G. (1991) How Membrane Chain-Melting Phase-Transition Temperature Is Affected by the Lipid Chain Assymmetry and Degree of Saturation—An Effective Chain-Length Model,Biochemistry 30, 7186–7193.

    Article  PubMed  CAS  Google Scholar 

  69. Suutari, M., and Laakso, S. (1994) Microbial Fatty Acids and Thermal Adaptation,Critical Reviews in Microbiology 20, 285–328.

    PubMed  CAS  Google Scholar 

  70. Shinitzky, M. (1984) Membrane Fluidity and Cellular Functions, inPhysiology of Membrane Fluidity (Shinitzky, M., ed.) Vol. II, pp. 1–52, CRC Press, Boca Raton.

    Google Scholar 

  71. Sinensky, M. (1974) Homeoviscous Adaptation—A Homeostatic Process That Regulates the Viscosity of Membrane Lipids inEscherichia coli, Proc. Natl. Acad. Sci. USA 71, 522–525.

    Article  PubMed  CAS  Google Scholar 

  72. Ingram, L.O. (1986) Microbial Tolerance to Alcohols: Role of the Cell Membrane,Trends Biotechnol. February 1986, 40–44.

  73. Keweloh, H., Diefenbach, R., and Rehm, H.J. (1991) Increase of Phenol Tolerance ofEscherichia coli by Alterations of the Fatty Acid Composition of the Membrane Lipids,Archives. Microbiol. 157, 49–53.

    CAS  Google Scholar 

  74. MacDonald, P.M., Sykes, B.D., and McElhaney, R.N. (1985) Flourine-19 Nuclear Magnetic Resonance Studies of Lipid Fatty Acyl Chain Order and Dynamics inAcholeplasma laidlawii B Membranes. A Direct Comparsion of the Effects ofCis andTrans Cyclopropane Ring and Double-Bond Substituents on Orientational Order,Biochemistry 24, 4651–4659.

    Article  PubMed  CAS  Google Scholar 

  75. Golden, N.G., and Powell, G.L. (1972) Stringent and Relaxed Control of Phospholipid Metabolism inEscherichia coli, J. Biol. Chem. 247, 6651–6658.

    PubMed  CAS  Google Scholar 

  76. Jiang, P., and Cronan, J.E. (1994) Inhibition of Fatty Acid Synthesis inEscherichia coli in the Absence of Phospholipid Synthesis and Release by Thioesterase Action,J. Bacteriol. 176, 2814–2821.

    PubMed  CAS  Google Scholar 

  77. Heipieper, H.J., Loffeld, B., Keweloh, H., and de Bont, J.A.M. (1995) TheCis/Trans Isomerisation of Unsaturated Fatty Acids inPseudomonas putida S12: An Indicator for Environmental Stress Due to Organic Compounds,Chemosphere 30, 1041–1051.

    Article  CAS  Google Scholar 

  78. Keweloh, H., Weyrauch, G., and Rehm, H.J. (1990) Phenol Induced Membrane Changes in Free and ImmobilizedEscherichia coli, Appl. Microbiol. Biotechnol. 33, 66–71.

    Article  PubMed  CAS  Google Scholar 

  79. de Andres, C., Espuny, M.J., Robert, M., Mercade, M.E., Manresa, A., and Guinea, J. (1991) Cellular Lipid Accumulation byPseudomonas aeruginos 44TI,Appl. Microbiol. Biotechnol. 35, 813–816.

    Article  Google Scholar 

  80. Vestal, J.R., and White, D.C. (1989) Lipid Analysis in Microbial Ecology,BioScience 39, 535–541.

    Article  PubMed  CAS  Google Scholar 

  81. White, D.C. (1993)In Situ Measurement of Microbial Biomass, Community Structure and Nutritional Status,Phil. Trans. R. Soc. Lond. A. 344, 59–67.

    CAS  Google Scholar 

  82. Ringelberg, D.B., and White, D.C. (1992) Fatty Acid Profiles, inBioremediation of Petroleum-Contaminated Soil on Kwajalein Island: Microbial Characterization and Biotreatability Studies (Jolley, H.I., and Donaldson, T.L., eds) pp. 31–36, Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Keweloh, H., Heipieper, H.J. Trans unsaturated fatty acids in bacteria. Lipids 31, 129–137 (1996). https://doi.org/10.1007/BF02522611

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522611

Keywords

Navigation