Skip to main content

Assays Used in the Study of Sperm Nuclear Proteins

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

Male factor infertility is a complex, multifactorial disease with over 2/3 of the cases being classified idiopathic. The idiopathic category of infertile males includes men who have compromised testicular function resulting in mature sperm with decreased functional parameters. One well established correlate to decreased sperm function is altered protamination in the mature, ejaculated sperm. The process of protamination involves an elegant interplay of several proteins: histones (both canonical and testis-­specific), transition proteins, and protamines. Each of these proteins work in concert to ensure that chromatin is packaged efficiently and stably to facilitate normal sperm motility and fertilization, and ultimately, to be able to contribute the paternal genome to the embryo. A developing area of interest in the field of sperm chromatin compaction is elucidating how protamination and retained histones affect the epigenetic status of the mature sperm. Nucleoprotein assays can be broken down into two main categories: assays that involve protein isolation and quantification techniques, and assays that involve in situ staining of nuclear proteins, which are ­discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl. 2008;31(6):537–45.

    Article  PubMed  Google Scholar 

  2. Dohle GR, Halley DJ, Van Hemel JO, et al. Genetic risk factors in infertile men with severe oligozoospermia and azoospermia. Hum Reprod. 2002;17(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  3. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8(1):11–29.

    Article  PubMed  CAS  Google Scholar 

  4. Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52–5.

    Article  PubMed  CAS  Google Scholar 

  5. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  6. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    PubMed  CAS  Google Scholar 

  7. Steger K. Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl). 1999;199(6):471–87.

    Article  CAS  Google Scholar 

  8. Dadoune JP. The nuclear status of human sperm cells. Micron. 1995;26(4):323–45.

    Article  PubMed  CAS  Google Scholar 

  9. Oliva R, Dixon GH. Vertebrate protamine gene evolution I. Sequence alignments and gene structure. J Mol Evol. 1990;30(4):333–46.

    Article  PubMed  CAS  Google Scholar 

  10. Hecht NB. Regulation of ‘haploid expressed genes’ in male germ cells. J Reprod Fertil. 1990;88(2):679–93.

    Article  PubMed  CAS  Google Scholar 

  11. Powell D, Cran DG, Jennings C, Jones R. Spatial organization of repetitive DNA sequences in the bovine sperm nucleus. J Cell Sci. 1990;97(Pt 1):185–91.

    PubMed  CAS  Google Scholar 

  12. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44(4):569–74.

    Article  PubMed  CAS  Google Scholar 

  13. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13(3):313–27.

    Article  PubMed  CAS  Google Scholar 

  14. Zini A, Gabriel MS, Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril. 2007;87(1):217–9.

    Article  PubMed  Google Scholar 

  15. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    Article  PubMed  Google Scholar 

  16. Aoki VW, Liu L, Jones KP, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86(5):1408–15.

    Article  PubMed  CAS  Google Scholar 

  17. Miller D, Brinkworth M, Iles D. Paternal DNA ­packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139(2):287–301.

    Article  PubMed  CAS  Google Scholar 

  18. Zini A, Zhang X, San Gabriel M. Sperm nuclear ­histone H2B: correlation with sperm DNA denaturation and DNA stainability. Asian J Androl. 2008;10(6):865–71.

    Article  PubMed  Google Scholar 

  19. Balhorn R, Brewer L, Corzett M. DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Mol Reprod Dev. 2000;56(2 Suppl):230–4.

    Article  PubMed  CAS  Google Scholar 

  20. Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279(19):20088–95.

    Article  PubMed  CAS  Google Scholar 

  21. Belokopytova IA, Kostyleva EI, Tomilin AN, Vorob’ev VI. Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev. 1993;34(1):53–7.

    Article  PubMed  CAS  Google Scholar 

  22. Carrell DT, Emery BR, Liu L. Characterization of aneuploidy rates, protamine levels, ultrastructure, and functional ability of round-headed sperm from two siblings and implications for intracytoplasmic sperm injection. Fertil Steril. 1999;71(3):511–6.

    Article  PubMed  CAS  Google Scholar 

  23. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    PubMed  CAS  Google Scholar 

  24. de Yebra L, Oliva R. Rapid analysis of mammalian sperm nuclear proteins. Anal Biochem. 1993;209(1):201–3.

    Article  PubMed  Google Scholar 

  25. Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11(7):36–42.

    Google Scholar 

  26. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.

    Article  PubMed  CAS  Google Scholar 

  27. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49(5):1083–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kazerooni T, Asadi N, Jadid L, et al. Evaluation of sperm’s chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J Assist Reprod Genet. 2009;26(11–12):591–6.

    Article  PubMed  Google Scholar 

  29. Sakkas D, Urner F, Bianchi PG, et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod. 1996;11(4):837–43.

    PubMed  CAS  Google Scholar 

  30. Hammadeh ME, Zeginiadov T, Rosenbaum P, Georg T, Schmidt W, Strehler E. Predictive value of sperm chromatin condensation (aniline blue staining) in the assessment of male fertility. Arch Androl. 2001;46(2):99–104.

    PubMed  CAS  Google Scholar 

  31. Wong A, Chuan SS, Patton WC, Jacobson JD, Corselli J, Chan PJ. Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones. Fertil Steril. 2008;90(5):1999–2002.

    Article  PubMed  Google Scholar 

  32. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.

    Article  PubMed  CAS  Google Scholar 

  33. de Mateo S, Gázquez C, Guimerà M, Balasch J, Meistrich ML, Ballescà JL, Oliva R. Protamine 2 ­precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2009;91:715–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jenkins, T.G., Emery, B.R., Carrell, D.T. (2011). Assays Used in the Study of Sperm Nuclear Proteins. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics