Skip to main content
Log in

Vertebrate protamine gene evolution I. Sequence alignments and gene structure

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The availability of the amino acid sequence for nine different mammalian P1 family protamines and the revised amino acid sequence of the chicken protamine galline (Oliva and Dixon 1989) reveals a much close relationship between mammalian and avian protamines than was previously thought (Nakano et al. 1976). Dot matrix analysis of all protamine genes for which genomic DNA or cDNA sequence is available reveals both marked sequence similarities in the mammalian protamine gene family and internal repeated sequences in the chicken protamine gene. The detailed alignments of the cis-acting regulatory DNA sequences shows several consensus sequence patterns, particularly the conservation of a cAMP response element (CRE) in all the protamine genes and of the regions flanking the TATA box, CAP site, N-terminal coding region, and polyadenylation signal. In addition we have found a high frequency of the CA dinucleotide immediately adjacent to the CRE element of both the protamine genes and the testis transition proteins, a feature not present in other genes, which suggests the existence of an extended CRE motif involved in the coordinate expression of protamine and transition protein genes during spermatogenesis. Overall these findings suggest the existence of an avian-mammalian P1 protamine gene line and are discussed in the context of different hypotheses for protamine gene evolution and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken JM, Miller FD, Hagen F, McKenzie DI, Krawetz SA, van de Sande JH, Rattner JB, Dixon GH (1985) Tandem repeats of a specific alternating purine-pyrimidine DNA sequence adjacent to protamine genes in the rainbow trout that can exist in the Z form. Biochemistry 24:6268–6272

    Article  PubMed  Google Scholar 

  • Alestrom P, Akusjarvi G, Lager M, Yeh-kai L, Pettersson U (1984) Genes encoding the core proteins of adenovirus type 2. J Biol Chem 259:13980–13985

    PubMed  Google Scholar 

  • Altman S, Model P, Dixon GH, Wosnick MA (1981) AnE. coli gene coding for a protamine-like protein. Cell 26:299–304

    Article  PubMed  Google Scholar 

  • Ammer H, Henschen A (1987) The major protamine from stallion sperm. Isolation and amino acid sequence. Biol Chem Hoppe-Seyler 368:1619–1626

    PubMed  Google Scholar 

  • Ammer H, Henschen A (1988a) Primary structure of rabbit sperm protamine, the first protamine of its type with an aberrant N-terminal. FEBS Lett 242:111–116

    Article  PubMed  Google Scholar 

  • Ammer H, Henschen A (1988b) Rat sperm protamine. Isolation and sequence analysis. Biol Chem Hoppe-Seyler 369:1301–1306

    PubMed  Google Scholar 

  • Ammer H, Henschen A, Lee CH (1986) Isolation and aminoacid sequence analysis of human sperm protamines P1 and P2. Occurrence of two forms of protamine P2. Biol Chem Hoppe-Seyler 367:515–522

    PubMed  Google Scholar 

  • Balhorn R (1982) A model for the structure of chromatin in mammalian sperm. J Cell Biol 93:298–305

    Article  PubMed  Google Scholar 

  • Balhorn R, Weston S, Thomas C, Wyrobek AJ (1984) DNA packaging in mouse spermatids. Exp Cell Res 150:298–308

    Article  PubMed  Google Scholar 

  • Balhorn R, Mazrimas JA, Corzett M, Cumming J, Fadem B (1989) Analysis of protamines isolated from two marsupials, the ring-tailed wallaby and gray short-tailed opossum. J Cell Biol 107:167a 950

    Google Scholar 

  • Belaiche D, Loir M, Kruggle W, Sautière P (1987) Isolation and characterization of two protamines St1 and St2 from stallion spermatozoa, and amino-acid sequence of the major protamine St1. Biochim Biophys Acta 913:145–149

    PubMed  Google Scholar 

  • Bellvé AR, McKay DJ, Renaux BS, Dixon GH (1988) Purification and characterization of mouse protamines P1 and P2. Amino acid sequence of P2. Biochemistry 27:2890–2897

    Article  PubMed  Google Scholar 

  • Berlot-Picard F, Vodjdani G, Doly J (1986) Isolation and characterization of a cDNA clone encoding testis protamine Z1 from the dog-fishScylliorhinus caniculus. Eur J Biochem 160:305–310

    Article  PubMed  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1604

    PubMed  Google Scholar 

  • Black JA, Dixon GH (1967) Evolution of a protamine: a further example of a partial gene duplication. Nature 216:152–154

    PubMed  Google Scholar 

  • Bloch DP (1969) A catalog of sperm histones. Genetics [Suppl] 61:93–111

    PubMed  Google Scholar 

  • Boer PH, Adra CN, Lau YF, McBurney MW (1987) The testispecific phosphoglycerate kinase gene pgk-2 is a recruited retroposon. Mol Cell Biol 7:3107–3112

    PubMed  Google Scholar 

  • Bokar JA, Roesler WJ, Vandenbark GR, Kaetzel DM, Hanson RW, Nilson JH (1988) Characterization of the cAMP responsive element from the genes for the subunit of glycoprotein hormones and phosphoenolpyruvate carboxykinase (GTP). J Biol Chem 263:19740–19747

    PubMed  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    Article  PubMed  Google Scholar 

  • Chiva M, Kasinsky HE, Subirana JA (1987) Characterization of protamines from four avian species. FEBS Lett 215:237–240

    Article  PubMed  Google Scholar 

  • Chiva M, Kasinsky HE, Mann M, Subirana JA (1988) On the diversity of sperm basic proteins in vertebrates: VI. Cytochemical and biochemical analysis in birds. J Exp Zool 245:304–317

    Article  Google Scholar 

  • Coelingh JP, Monfoort CH, Rozijn TH, Gevers Leuven JA, Schiphof R, Steyn-Parve EP, Braunitzer G, Schranck B, Ruhfus A (1972) The complete amino acid sequence of the basic nuclear protein of bull spermatozoa. Biochim Biophys Acta 285:1–14

    PubMed  Google Scholar 

  • Coulondre C, Miller JH, Farabought PJ, Gilbert W (1978) Molecular basis of base substitution hotspots inEscherichia coli. Nature 284:775–780

    Article  Google Scholar 

  • Davenport CW, Heindel JJ (1987) Cholinergic inhibition of cAMP accumulation in Sertoli cells cultured from immature hamsters. J Androl 8:307–313

    PubMed  Google Scholar 

  • Dixon GH, Candido EMP, Honda BM, Louie AJ, MacLeod AC, Sung MT (1975) In: The structure and function of chromatin. Ciba Foundation symposium 28, Elsevier, Amsterdam

    Google Scholar 

  • Dixon GH, Aiken JM, Jakowski JM, McKenzie DI, Moir R, States JC (1985) Organization and evolution of the protamine genes of salmoind fishes. In: Reek GR, Goodwin GA, Puigdomenech P (eds) Chromosomal proteins and gene expression. Plenum Press, New York, pp 287–314

    Google Scholar 

  • Domenjoud L, Fronia C, Uhde F, Engel W (1988) Sequence of human protamine 2 cDNA. Nucleic Acids Res 16:7733

    PubMed  Google Scholar 

  • Dynan WS, Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316:774–778

    Article  PubMed  Google Scholar 

  • Eikvar L, Levy FO, Jutte NHPM, Cervenka J, Yoganathan T, Hansson V (1985) Effects of adenosine analogs on glucagonstimulated adenosine 3′,5′-monophosphate formation in Sertoli cell cultures from immature rats. Endocrinology 117:488–491

    PubMed  Google Scholar 

  • Fink JS, Verhave M, Kasper S, Tsukada T, Mandel C, Goodman RH (1988) The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc Natl Acad Sci USA 85:6662–6666

    PubMed  Google Scholar 

  • Fitch WM, Langley CH (1976) Protein evolution and the molecular clock. Fed Proc 35:2092–2097

    PubMed  Google Scholar 

  • Galibert F, Chen TN, Mandart E (1982) Nucleotide sequence of a cloned woodchuk hepatitis virus genome: comparison with the hepatitis b virus sequence. J Virol 41:51–65

    PubMed  Google Scholar 

  • Gilbert W, Marchioni M, McKnight G (1986) On the antiquity of introns. Cell 46:151–154

    Article  PubMed  Google Scholar 

  • Gusse M, Sautiere P, Belaiche D, Martinage A, Roux C, Dadoune JP, Chevalier P (1986) Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta 884:124–135

    PubMed  Google Scholar 

  • Hawkins JD (1988) A survey of intron and exon lengths. Nucleic Acids Res 16:9893–9905

    PubMed  Google Scholar 

  • Heidaran MA, Kozak CA, Kistler WS (1989) Nucleotide sequence of the STP-1 gene coding for rat spermatid nuclear transition protein 1 (TP1): homology with protamine P1 and assignment of the mouse STP-1 gene to chromosome 1. Gene 75:39–46

    Article  PubMed  Google Scholar 

  • Heindel JJ, Rothenberg R, Robinson GA, Steinberg A (1975) LH and FSH stimulation of cyclic AMP in specific cell types isolated from the testes. J Cyclic Nucleotide Res 1:69–79

    PubMed  Google Scholar 

  • Hobson GM, Mitchell MT, Molloy GR, Pearson ML, Benfield PA (1988) Identification of a novel TA-rich DNA binding protein that recognizes a TATA sequence within the brain creatine kinase promoter. Nucleic Acids Res 16:8925–8944

    PubMed  Google Scholar 

  • Hoeffler JP, Meyer TE, Yun Y, Lameson JL, Habenen JF (1989) Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242:1430–1433

    Google Scholar 

  • Jankowski JM, States JC, Dixon GH (1986) Evidence of sequences resembling avian retrovirus long terminal repeats flanking the trout protamine gene. J Mol Evol 23:1–10

    PubMed  Google Scholar 

  • Johnson PA, Peschon JJ, Yelick PC, Palmiter RD, Hecht NB (1988) Sequence homologies in the mouse protamine 1 and 2 genes. Biochim Biophys Acta 950:45–53

    PubMed  Google Scholar 

  • Kasinsky HE (1989) Specificity and distribution of sperm basic proteins. In: Hnilica L, Stein G, Stein J (eds) Histones and other basic sperm nuclear proteins. CRC Press, Boca Raton FL

    Google Scholar 

  • Kasinsky HE, Mann M, Huang SY, Fabrel L, Coyle B, Byrd EW (1987) On the diversity of sperm basic proteins in the vertebrates: V. Cytochemical and amino acid analysis in Squamata, Testudines, and Crocodylia. J Exp Zool 243:137–151

    Article  PubMed  Google Scholar 

  • Kleene KC, Distel RJ, Hecht NB (1985) Nucleotide sequence of a cDNA clone encoding mouse protamine 1. Biochemistry 24:719–722

    Article  PubMed  Google Scholar 

  • Konopka AJ (1988) Compilation of DNA strand exchange sites for non-homologous recombination in somatic cells. Nucleic Acids Res 16:1739–1759

    PubMed  Google Scholar 

  • Krawetz SA, Dixon GH (1988) Sequence similarities of the protamine genes: implications for regulation and evolution. J Mol Evol 27:291–297

    PubMed  Google Scholar 

  • Krawetz SA, Connor W, Dixon GH (1987) Bovine protamine genes contain a single intron. DNA 6:47–57

    PubMed  Google Scholar 

  • Krawetz SA, Connor W, Dixon GH (1988) Cloning of bovine P1 protamine cDNA and the evolution of vertebrate P1 protamines. J Biol Chem 263:321–326

    PubMed  Google Scholar 

  • Lee C-H, Ahmed M, Hecht W, Hecht, NB, Engel W (1987a) Haploid expression of a protamine gene during bovine spermatogenesis. Biol Chem Hoppe-Seyler 368:131–135

    PubMed  Google Scholar 

  • Lee C-H, Hoyer-Fender S, Engel W (1987b) The nucleotide sequence of a human protamine 1 cDNA. Nucleic Acids Res 15:7639

    PubMed  Google Scholar 

  • Liljenstrom, Heijne (1987) Translation rate modification by preferential codon usage: intragenic position effects. J Theor Biol 124:43–55

    PubMed  Google Scholar 

  • Maier W-M, Adham I, Klem V, Engel W (1988) The nucleotide sequence of a boar protamine 1 cDNA. Nucleic Acids Res 16:11826

    PubMed  Google Scholar 

  • Marchionni M, Gilbert W (1986) The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 46:133–141

    Article  PubMed  Google Scholar 

  • Mathis DJ, Chambon P (1981) The SV40 early region TATA box is required for accuratein vitro initiation of transcription. Nature 290:310–315

    Article  PubMed  Google Scholar 

  • Mazrimas JA, Corzett M, Campos C, Balhorn R (1986) A corrected primary sequence for bull protamine. Biochim Biophys Acta 872:11–15

    PubMed  Google Scholar 

  • McKay DJ, Renaux BS, Dixon GD (1985) The amino acid sequence of human sperm protamine P1. Biosc Rep 5:383–391

    Article  Google Scholar 

  • McKay DJ, Renaux BS, Dixon GH (1986a) Rainbow trout protamines. Eur J Biochem 158:361–366

    Article  PubMed  Google Scholar 

  • McKay DJ, Renaux BS, Dixon GH (1986b) Human sperm protamines. Eur J Biochem 156:5–8

    Article  PubMed  Google Scholar 

  • McLaughlin PJ, Dayhoff MO (1972) Evolution of species and proteins: a time scale. In: Dayhoff MO (ed) Atlas of protein sequence and structure. The National Biomedical Research Foundation, Washington DC, pp 47–52

    Google Scholar 

  • Mezquita C (1985a) Chromatin proteins and chromatin structure in spermatogenesis. In: Reek GR, Goodwin GA, Puigdomenech P (eds) Chromosomal proteins and gene expression. Plenum Press, New York, pp 315–332

    Google Scholar 

  • Mezquita C (1985b) Chromatin composition, structure and function in spermatogenesis. In: Barbera-Guillem E (ed) Revisiones Sobre Biologia Celular No. 5. Leioa-Vizcaya, Spain

  • Moir RD, Dixon GH (1987) Structure of several multigene families in salmonid families. Thesis, University of Calgary, Calgary, Alberta, Canada

    Google Scholar 

  • Moir RD, Dixon GH (1988a) Characterization of a protamine gene from the chum salmon (Oncorhynchus keta). J Mol Evol 27:8–16

    PubMed  Google Scholar 

  • Moir RD, Dixon GH (1988b) A repetitive DNA sequence in the salmonid fishes similar to a retroviral long terminal repeat. J Mol Evol 27:1–7

    PubMed  Google Scholar 

  • Nakajima N, Horikoshi M, Roeder RG (1988) Factors involved in specific transcription by mammalian RNA polymerase TI: purification, genetic specificity, and TATA box-promoter interactions of IFIID. Mol Cell Biol 8:4028–4040

    PubMed  Google Scholar 

  • Nakano M, Tobita T, Ando T (1976) Studies on a protamine (galline) from fowl sperm. Int J Pept Protein Res 8:565–578

    PubMed  Google Scholar 

  • Nakano M, Kasai K, Yoshida K, Tanimoto T, Tamaki Y, Tobita T (1989) Conformation of the fowl protamine, galline, and its binding properties to DNA. J Biochem (Tokyo) 105:133–137

    Google Scholar 

  • NC-IUB (Nomenclature Committee of the International Union of Biochemistry) (1986) Nomenclature for incompletely specified bases in nucleic acid sequences. J Biol Chem 261:13–17

    Google Scholar 

  • Oliva R, Dixon GH (1989) Chicken protamine genes are intronless: the complete nucleotide sequence and structure of the two loci. J Biol Chem 264:12472–12481

    PubMed  Google Scholar 

  • Oliva R, Mezquita C (1986) Marked differences in the ability of distinct protamines to disassemble nucleosomal core particlesin vitro. Biochemistry 25:6508–6511

    Article  PubMed  Google Scholar 

  • Oliva R, Bazett-Jones D, Mezquita C, Dixon GH (1987) Factors affecting nucleosome disassembly by protaminesin vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 262:17016–17025

    PubMed  Google Scholar 

  • Oliva R, Mezquita J, Mezquita C, Dixon GH (1988) Haploid expression of the rooster protamine mRNA in the postmeiotic stages of spermatogenesis. Dev Biol 125:332–340

    Article  PubMed  Google Scholar 

  • Oliva R, Goren R, Dixon GH (1989) Quail (Coturnix japonica) full length cDNA sequence and the function and evolution of vertebrate protamines. J Biol Chem 264:17627–17630

    PubMed  Google Scholar 

  • Oyen O, Scott JD, Cadd GG, McKnight GS, Krebs EG, Hansson U, Jahnsen T (1988) A unique mRNA species for a regulatory subunit of cAMP-dependent protein kinase is specifically induced in haploid germ cells. FEBS Lett 229:381–394

    Google Scholar 

  • Poccia D (1986) Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. Int Rev Cytol 105:1–65

    PubMed  Google Scholar 

  • Quigley F, Martin WF, Cerf R (1988) Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85:2672–2676

    PubMed  Google Scholar 

  • Risley MS (1988) Chromatin organization in sperm. In: Adolph K (ed) Chromosomes: eukaryotic, prokaryotic and viral, CRC Press, Boca Raton FL

    Google Scholar 

  • Rodas DD, Roufe DJ (1987) Seqaid program. Kansas State University, Molecular genetics laboratory, Manhattan

  • Roesler WJ, Vandenbark GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 263:9063–9066

    PubMed  Google Scholar 

  • Sautière P, Belaiche D, Martinage A, Loir M (1984) Primary structure of the ram (Ovis aries) protamine. Eur J Biochem 144:121–125

    Article  PubMed  Google Scholar 

  • Seeger C, Ganem D, Varmus HE (1984) Nucleotide sequence of an infectious molecularly cloned genome of ground squirrel hepatitis virus. J Virol 51:367–375

    PubMed  Google Scholar 

  • Shih MC, Heinrich P, Goodman HM (1988) Intron existence predated the divergence of eukaryotes and prokaryotes. Science 242:1164–1166

    PubMed  Google Scholar 

  • Slightom JL, Blechl AE, Smithies O (1980) Human fetalGγ- andAγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638

    Article  PubMed  Google Scholar 

  • Smith FF, Tres LL, Kierszenbaum AL (1987) Ornithine decarboxylase activity during rat spermatogenesisin vivo andin vitro: selective effect of hormones and growth factors. J Cell Physiol 133:305–312

    Article  PubMed  Google Scholar 

  • States JC, Connor W, Wosnick MA, Aiken JM, Gedamu L, Dixon GH (1982) Nucleotide sequence of a protamine component Cii gene ofSalmo gairdnerii Nucleic Acids Res 10:4551–4563

    PubMed  Google Scholar 

  • Steinmetz M, Uematsu, Lindahl KF (1987) Hotspots of homologous recombination in mammalian genomes. Trends Genet 3:7–10

    Article  Google Scholar 

  • Stringer JR (1985) Recombination between poly[d(GT)] sequences in simian virus 40-infected cultured cells. Mol Cell Biol 5:1247–1259

    PubMed  Google Scholar 

  • Struhl K (1987) Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell 49:295–297

    Article  PubMed  Google Scholar 

  • Subirana JA (1975) On the biological role of basic proteins in spermatozoa and during spermiogenesis. In: Duckett JG, Racey PA (ed) The biology of the male gamete. Academic Press, London, pp 239–244

    Google Scholar 

  • Subirana JA (1982) Nuclear proteins in spermatozoa and their interactions with DNA. In: Andre J (ed) Proceedings of the Fourth International Symposium on Spermatology. Martinus Nijhoff, The Hague, pp 197–213

    Google Scholar 

  • Subirana JA, Cozcolluela C, Palau J, Unzeta M (1973) Protamines and other basic proteins from spermatozoa of molluscs. Biochim Biophys Acta 317:369

    Google Scholar 

  • Tobita T, Tanimoto T, Nakano M (1988) The binding mode of a mammalian (boar) protamine to DNA. Biochem Int 16:163–173

    PubMed  Google Scholar 

  • Tobita T, Tsutsumi H, Kato A, Suzuki H, Nomoto M, Ando T (1983) Complete amino acid sequence of boar protamine. Biochim Biophys Acta 744:141–146

    Google Scholar 

  • Warrant RW, Kim S-H (1978) α-helix-double helix interaction shown in the structure of a protamine-transfer RNA complex and a nucleoprotamine model. Nature 271:130–135

    Article  PubMed  Google Scholar 

  • Weiner AM, Deininger PL, Efstratiadis A (1986) Nonvival retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliva, R., Dixon, G.H. Vertebrate protamine gene evolution I. Sequence alignments and gene structure. J Mol Evol 30, 333–346 (1990). https://doi.org/10.1007/BF02101888

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101888

Key words

Navigation