Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 13))

Abstract

Up to 2% of mammalian proteome is post-translationally modified with isoprenoid lipids. Many of these molecules are key regulators of signaling pathways involved in cellular homeostasis. Appropriate signaling by prenylated proteins requires a combination of correct expression levels, efficient post-translational modification, correct subcellular trafficking and nanolocalisation as well as an appropriately regulated activation/deactivation cycle. Aberrant signaling by prenylated proteins can result from the dysregulation of any of these steps, often contributing to human disease. Owing to the prevalence of dysregulated signaling by prenylated proteins in human disease, considerable research has been undertaken into developing pharmacological inhibitors of protein prenylation. A variety of small molecule farnesyltransferase and geranylgeranyltransferase inhibitors have been developed that have been demonstrated to impair tumor growth in vivo. Additionally the cholesterol lowering drugs known as statins have also been demonstrated to inhibit protein prenylation by preventing the formation of prenylation precursors. This review attempts to summarize the current understanding of protein prenylation and the interplay of processes required for signaling by prenylated proteins. The review also highlights the importance of developing new techniques to assess the effects of current and future therapeutic compounds on global prenylation, so as to accurately explain and predict their effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abankwa, D., Gorfe, A.A., Hancock, J.F. (2007). Ras nanoclusters: molecular structure and assembly. Semin. Cell Dev. Biol. 18:599–607.

    Article  PubMed  CAS  Google Scholar 

  • Abankwa, D., Gorfe, A.A., Hancock, J.F. (2008a). Mechanisms of Ras membrane organization and signalling: Ras on a rocker. Cell Cycle 7:2667–2673.

    Article  PubMed  CAS  Google Scholar 

  • Abankwa, D., Hanzal-Bayer, M., Ariotti, N., et al. (2008b). A novel switch region regulates H-ras membrane orientation and signal output. EMBO J. 27:727–735.

    Article  PubMed  CAS  Google Scholar 

  • Abankwa, D., and Vogel, H. (2007). A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. J. Cell Sci. 120:2953–2962.

    Article  PubMed  CAS  Google Scholar 

  • Adnane, J., Seijo, E., Chen, Z., et al. (2002). RhoB, not RhoA, represses the transcription of the transforming growth factor beta type II receptor by a mechanism involving activator protein 1. J. Biol. Chem. 277:8500–8507.

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov, K., Simon, I., Yurchenko, V., et al. (1999). Characterization of the ternary complex between Rab7, REP-1 and Rab geranylgeranyl transferase. Eur. J. Biochem. 265:160–170.

    Article  PubMed  CAS  Google Scholar 

  • Ali, B.R., Wasmeier, C., Lamoreux, L., et al. (2004). Multiple regions contribute to membrane targeting of Rab GTPases. J. Cell Sci. 117:6401–6412.

    Article  PubMed  CAS  Google Scholar 

  • Alory, C., and Balch, W.E. (2000). Molecular basis for Rab prenylation. J. Cell Biol. 150:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Anant, J.S., and Fung, B.K. (1992). In vivo farnesylation of rat rhodopsin kinase. Biochem. Biophys. Res. Commun. 183:468–473.

    Article  PubMed  CAS  Google Scholar 

  • Anderegg, R.J., Betz, R., Carr, S.A., et al. (1988). Structure of Saccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component. J. Biol. Chem. 263:18236–18240.

    PubMed  CAS  Google Scholar 

  • Andres, D.A., Milatovich, A., Ozcelik, T., et al. (1993a). cDNA cloning of the two subunits of human CAAX farnesyltransferase and chromosomal mapping of FNTA and FNTB loci and related sequences. Genomics 18:105–112.

    Article  PubMed  CAS  Google Scholar 

  • Andres, D.A., Seabra, M.C., Brown, M.S., et al. (1993b). cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell 73:1091–1099.

    Article  PubMed  CAS  Google Scholar 

  • Apolloni, A., Prior, I.A., Lindsay, M., et al. (2000). H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell Biol. 20:2475–2487.

    Article  PubMed  CAS  Google Scholar 

  • Ashar, H.R., James, L., Gray, K., et al. (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules.J. Biol. Chem. 275:30451–30457.

    Article  PubMed  CAS  Google Scholar 

  • Barbacid, M. (1987). ras genes. Annu. Rev. Biochem. 56:779–827.

    Article  PubMed  CAS  Google Scholar 

  • Baron, R., Fourcade, E., Lajoie-Mazenc, I., et al. (2000). RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc. Natl. Acad. Sci. U.S.A. 97:11626–11631.

    Article  PubMed  CAS  Google Scholar 

  • Baron, R.A., and Seabra, M.C. (2008). Rab geranylgeranylation occurs preferentially via the pre-formed REP-RGGT complex and is regulated by geranylgeranyl pyrophosphate. Biochem. J. 415:67–75.

    Article  PubMed  CAS  Google Scholar 

  • Basso, A.D., Kirschmeier, P., Bishop, W.R. (2006). Lipid posttranslational modifications. Farnesyl transferase inhibitors. J. Lipid Res. 47:15–31.

    Article  PubMed  CAS  Google Scholar 

  • Belanis, L., Plowman, S.J., Rotblat, B., et al. (2008). Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. Mol. Biol. Cell 19:1404–1414.

    Article  PubMed  CAS  Google Scholar 

  • Berthold, J., Schenkova, K., Rivero, F. (2008). Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol. Sin. 29:285–295.

    Article  PubMed  CAS  Google Scholar 

  • Berzat, A.C., Brady, D.C., Fiordalisi, J.J., et al. (2005). Using inhibitors of prenylation to block localization and transforming activity. Meth. Enzymol. 407:575–597.

    Article  CAS  Google Scholar 

  • Bivona, T.G., Quatela, S., Philips, M.R. (2006a). Analysis of Ras activation in living cells with GFP-RBD. Meth. Enzymol. 407:128–143.

    Article  PubMed  CAS  Google Scholar 

  • Bivona, T.G., Quatela, S.E., Bodemann, B.O., et al. (2006b). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21:481–493.

    Article  PubMed  CAS  Google Scholar 

  • Bos, J.L., Rehmann, H., Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, K.E., and Fierke, C.A. (2004). Positively charged side chains in protein farnesyltransferase enhance catalysis by stabilizing the formation of the diphosphate leaving group. Biochemistry 43:5256–5265.

    Article  PubMed  CAS  Google Scholar 

  • Buss, J.E., Quilliam, L.A., Kato, K., et al. (1991). The COOH-terminal domain of the Rap1A (Krev-1) protein is isoprenylated and supports transformation by an H-Ras:Rap1A chimeric protein. Mol. Cell Biol. 11:1523–1530.

    PubMed  CAS  Google Scholar 

  • Bustelo, X.R., Sauzeau, V., Berenjeno, I.M. (2007). GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29:356–70.

    Article  PubMed  CAS  Google Scholar 

  • Calero, M., Chen, C.Z., Zhu, W., et al. (2003). Dual prenylation is required for Rab protein localization and function. Mol. Biol. Cell 14:1852–1867.

    Article  PubMed  CAS  Google Scholar 

  • Casey, P.J., and Seabra, M.C. (1996). Protein prenyltransferases. J. Biol. Chem. 271:5289–5292.

    Article  PubMed  CAS  Google Scholar 

  • Caswell, P.T., Spence, H.J., Parsons, M. (2007). Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13:496–510.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T.O., Rittenhouse, S.E., Tsichlis, P.N. (1999). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68:965–1014.

    Article  PubMed  CAS  Google Scholar 

  • Chang, E.C., and Philips, M.R. (2006). Spatial segregation of Ras signaling: new evidence from fission yeast. Cell Cycle 5:1936–1939.

    Article  PubMed  CAS  Google Scholar 

  • Chavrier, P., Gorvel, J.P., Stelzer, E., et al. (1991). Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 353:769–772.

    Article  PubMed  CAS  Google Scholar 

  • Chenette, E.J., Mitin, N.Y., Der, C.J. (2006). Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity. Mol. Biol. Cell 17:3108–3121.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K.W., Lahad, J.P., Kuo, W.L., et al. (2004). The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat. Med. 10:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  • Cherfils, J., and Chardin, P. (1999). GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24:306–311.

    Article  PubMed  CAS  Google Scholar 

  • Chia, W.J., and Tang, B.L. (2009). Emerging roles for Rab family GTPases in human cancer. Biochim. Biophys. Acta. 1795:110–116.

    PubMed  CAS  Google Scholar 

  • Chien, Y., and White, M.A. (2003). RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep. 4:800–806.

    Article  PubMed  CAS  Google Scholar 

  • Chook, Y.M., and Blobel, G. (2001). Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11:703–715.

    Article  PubMed  CAS  Google Scholar 

  • Choy, E., Chiu, V.K., Silletti, J., et al. (1999). Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S. (1992). Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu. Rev. Biochem. 61:355–386.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S., Vogel, J.P., Deschenes, R.J., et al. (1988). Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc. Natl. Acad. Sci. U.S.A. 85:4643–4647.

    Article  PubMed  CAS  Google Scholar 

  • Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci. STKE. 250:RE13.

    Article  Google Scholar 

  • Cory, G.O., and Cullen, P.J. (2007). Membrane curvature: the power of bananas, zeppelins and boomerangs. Curr. Biol. 17:R455–R457.

    Article  PubMed  CAS  Google Scholar 

  • D’Adamo, P., Menegon, A., Lo, N.C., et al. (1998). Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat. Genet. 19:134–139 [see erratum in Nat. Genet. 1998, Jul;19(3):303].

    Article  PubMed  Google Scholar 

  • Dai, Q., Choy, E., Chiu, V., et al. (1998). Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273:15030–15034.

    Article  PubMed  CAS  Google Scholar 

  • De Smedt, F., Boom, A., Pesesse, X., et al. (1996). Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J. Biol. Chem. 271:10419–10424.

    Article  PubMed  Google Scholar 

  • Denoyelle, C., Hong, L., Vannier, J.P., et al. (2003). New insights into the actions of bisphosphonate zoledronic acid in breast cancer cells by dual RhoA-dependent and -independent effects. Br. J. Cancer. 88:1631–1640.

    Article  PubMed  CAS  Google Scholar 

  • Der, C.J., Krontiris, T.G., Cooper, G.M. (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl. Acad. Sci. U.S.A. 79:3637–3640.

    Article  PubMed  CAS  Google Scholar 

  • Devos, S.A., Van Den Bossche, N., De Vos, M., et al. (2003). Adverse skin reactions to anti-TNF-alpha monoclonal antibody therapy. Dermatology 206:388–390.

    Article  PubMed  CAS  Google Scholar 

  • Dudler, T., and Gelb, M.H. (1996). Palmitoylation of Ha-Ras facilitates membrane binding, activation of downstream effectors, and meiotic maturation in Xenopus oocytes. J. Biol. Chem. 271:11541–11547.

    Article  PubMed  CAS  Google Scholar 

  • Dunten, P., Kammlott, U., Crowther, R., et al. (1998). Protein farnesyltransferase: structure and implications for substrate binding. Biochemistry 37:7907–7912.

    Article  PubMed  CAS  Google Scholar 

  • Dursina, B., Thoma, N.H., Sidorovitch, V., et al. (2002). Interaction of yeast rab geranylgeranyl transferase with its protein and lipid substrates. Biochemistry 41:6805–6816.

    Article  PubMed  CAS  Google Scholar 

  • Dvorsky, R., and Ahmadian, M.R. (2004). Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep. 5:1130–1136.

    Article  PubMed  CAS  Google Scholar 

  • Eggeling, C., Ringemann, C., Medda, R., et al. (2009). Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162.

    Article  PubMed  CAS  Google Scholar 

  • Elad-Sfadia, G., Haklai, R., Balan, E., et al. (2004). Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279:34922–34930.

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature 420:629–635.

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth, C.C., Seabra, M.C., Ericsson, L.H., et al. (1994). Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc. Natl. Acad. Sci. U.S.A. 91:11963–11967.

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth, C.C., Wolda, S.L., Gelb, M.H, et al. (1989). Human lamin B contains a farnesylated cysteine residue. J. Biol. Chem. 264:20422–20429.

    PubMed  CAS  Google Scholar 

  • Farrell, F.X., Yamamoto, K., Lapetina, E.G. (1993). Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem. J. 289(Pt 2):349–355.

    PubMed  CAS  Google Scholar 

  • Fivaz, M., and Meyer, T. (2005). Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. J. Cell Biol. 170:429–441.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, J.L., Abo, A., Lambeth, J.D. (1996). Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J. Biol. Chem. 271:19794–19801.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, M., Kanno, E., Ishibashi, K., et al. (2008). Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol. Cell. Proteomics 7:1031–1042.

    Article  PubMed  CAS  Google Scholar 

  • Furfine, E.S., Leban, J.J., Landavazo, A., et al. (1995). Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry 34:6857–6862.

    Article  PubMed  CAS  Google Scholar 

  • Gelb, M.H. 1997. Protein prenylation, etcetera: signal transduction in two dimensions. Science 275:1750–1751.

    Article  PubMed  CAS  Google Scholar 

  • Gelb, M.H., Brunsveld, L., Hrycyna, C.A., et al. (2006). Therapeutic intervention based on protein prenylation and associated modifications. Nat. Chem. Biol. 2:518–528.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, A.Q., Ali, B.R., Ramalho, J.S., et al. (2003). Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol. Biol. Cell 14:1882–1899.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, J.S., Drake, K.R., Rogers, C., et al. (2005). Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170:261–272.

    Article  PubMed  CAS  Google Scholar 

  • Gorfe, A.A., Bayer, M.-H, Abankwa, D., et al. (2007). Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J. Med. Chem. 50:674–684.

    Article  PubMed  CAS  Google Scholar 

  • Goswami, D., Gowrishankar, K., Bilgrami, S., et al. (2008). Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, J., Steinman, L., Zamvil, S.S. (2006). Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat. Rev. Immunol. 6:358–370.

    Article  PubMed  CAS  Google Scholar 

  • Griscelli, C., Durandy, A., Guy-Grand, D., et al. (1978). A syndrome associating partial albinism and immunodeficiency. Am. J. Med. 65:691–702.

    Article  PubMed  CAS  Google Scholar 

  • Grosshans, B.L., Ortiz, D., Novick, P. (2006). Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. U.S.A. 103:11821–11827.

    Article  PubMed  CAS  Google Scholar 

  • Gruenberg, J. (2003). Lipids in endocytic membrane transport and sorting. Curr. Opin. Cell Biol. 15:382–388.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z., Wu, Y.W., Das, D., et al. (2008). Structures of RabGGTase-substrate/product complexes provide insights into the evolution of protein prenylation. EMBO J. 27:2444–2456.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, L., Magee, A.I., Marshall, C.J., et al. (1989). Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J. 8:1093–1098.

    PubMed  CAS  Google Scholar 

  • Hancock, J.F. (2003). Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol. 4:373–384.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J.F. (2006). Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7:456–462.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J.F., Magee, A.I., Childs, J.E., et al. (1989). All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57:1167–1177.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J.F., and Parton, R.G. (2005). Ras plasma membrane signalling platforms. Biochem. J. 389:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J.F., Paterson, H., Marshall, C.J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139.

    Article  PubMed  CAS  Google Scholar 

  • Harding, A., and Hancock, J.F. (2008). Ras nanoclusters: combining digital and analog signaling. Cell Cycle 7:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, H.L., Bowers, K.E., Fierke, C.A. (2004). Lysine beta311 of protein geranylgeranyltransferase type I partially replaces magnesium. J. Biol. Chem. 279:30546–30553.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, H.L., Hicks, K.A., Fierke, C.A. (2005). Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity. Biochemistry 44:15314–15324.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, J.J. (1964). An unidentified virus which causes the rapid production of tumours in mice. Nature 204:1104–1105.

    Article  PubMed  CAS  Google Scholar 

  • Heasman, S.J., and Ridley, A.J. (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell. Biol. 9:690–701.

    Article  PubMed  CAS  Google Scholar 

  • Heilmeyer, L.M. Jr., Serwe, M., Weber, C., et al. (1992). Farnesylcysteine, a constituent of the alpha and beta subunits of rabbit skeletal muscle phosphorylase kinase: localization by conversion to S-ethylcysteine and by tandem mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 89:9554–9558.

    Article  PubMed  CAS  Google Scholar 

  • Heo, W.D., Inoue, T., Park, W.S., et al. (2006). PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.C., Casey, P.J., Fierke, C.A. (1997). Evidence for a catalytic role of zinc in protein farnesyltransferase. Spectroscopy of Co2+-farnesyltransferase indicates metal coordination of the substrate thiolate. J. Biol. Chem. 272:20–23.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M., and Prendergast, G.C. (2006). RhoB in cancer suppression. Histol. Histopathol. 21:213–218.

    PubMed  CAS  Google Scholar 

  • Inglese, J., Koch, W.J., Caron, M.G., et al. (1992). Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature 359:147–150.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, K., Mouritsen, O.G., Anderson, R.G. (2007). Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9:7–14.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, A.B., and Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21:247–269.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, A.B., Majerus, P.W. (1995). Properties of type II inositol polyphosphate 5-phosphatase. J. Biol. Chem. 270:9370–9377.

    Article  PubMed  CAS  Google Scholar 

  • John, J., Rensland, H., Schlichting, I., et al. (1993). Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. J. Biol. Chem. 268:923–929.

    PubMed  CAS  Google Scholar 

  • Joneson, T., and Bar-Sagi, D. (1998). A Rac1 effector site controlling mitogenesis through superoxide production. J. Biol. Chem. 273:17991–17994.

    Article  PubMed  CAS  Google Scholar 

  • Karnoub, A.E., and Weinberg, R.A. (2008). Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9:517–531.

    Article  PubMed  CAS  Google Scholar 

  • Karp, J.E. (2001). Farnesyl protein transferase inhibitors as targeted therapies for hematologic malignancies. Semin. Hematol. 38:16–23.

    Article  PubMed  CAS  Google Scholar 

  • Khosravi-Far, R., Solski, P.A., Clark, G.J., et al. (1995). Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell Biol. 15:6443–6453.

    PubMed  CAS  Google Scholar 

  • Kinsella, B.T., Erdman, R.A., Maltese, W.A. (1991). Carboxyl-terminal isoprenylation of ras-related GTP-binding proteins encoded by rac1, rac2, and ralA. J. Biol. Chem. 266:9786–9794.

    PubMed  CAS  Google Scholar 

  • Kinsella, B.T., and Maltese, W.A. (1991). rab GTP-binding proteins implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel carboxyl- terminal motif. J. Biol. Chem. 266:8540–8544.

    PubMed  CAS  Google Scholar 

  • Konstantinopoulos, P.A., Karamouzis, M.V., Papavassiliou, A.G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat. Rev. Drug Discov. 6:541–555.

    Article  PubMed  CAS  Google Scholar 

  • Kontani, K., Tada, M., Ogawa, T., et al. (2002). Di-Ras, a distinct subgroup of ras family GTPases with unique biochemical properties. J. Biol. Chem. 277:41070–41078.

    Article  PubMed  CAS  Google Scholar 

  • Kutzleb, C., Sanders, G., Yamamoto, R., et al. (1998). Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J. Cell Biol. 143:795–813.

    Article  PubMed  CAS  Google Scholar 

  • Lackner, M.R., Kindt, R.M., Carroll, P.M., et al. (2005). Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7:325–336.

    Article  PubMed  CAS  Google Scholar 

  • Lai, R.K., Perez-Sala, D., Canada, F.J., et al. (1990). The gamma subunit of transducin is farnesylated. Proc. Natl. Acad. Sci. U.S.A. 87:7673–7677.

    Article  PubMed  CAS  Google Scholar 

  • Lane, K.T., and Beese, L.S. (2006). Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J. Lipid Res. 47:681–699.

    Article  PubMed  CAS  Google Scholar 

  • Lerner, E.C., Hamilton, A.D., Sebti, S.M. (1997a). Inhibition of Ras prenylation: a signaling target for novel anti-cancer drug design. Anticancer Drug Des. 12:229–238.

    PubMed  CAS  Google Scholar 

  • Lerner, E.C., Zhang, T.T., Knowles, D.B., et al. (1997b). Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15:1283–1288.

    Article  PubMed  CAS  Google Scholar 

  • Leung, K.F., Baron, R., Ali, B.R., et al. (2007). Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J. Biol. Chem. 282:1487–1497.

    Article  PubMed  CAS  Google Scholar 

  • Leung, K.F., Baron, R., Seabra, M.C. (2006). Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J. Lipid Res. 47:467–475.

    Article  PubMed  CAS  Google Scholar 

  • Leventis, R., and Silvius, J.R. (1998). Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B. Biochemistry 37:7640–7648.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg, D., Goni, F.M., Heerklotz, H. (2005). Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30:430–436.

    Article  PubMed  CAS  Google Scholar 

  • Long, S.B., Casey, P.J., Beese, L.S. (1998). Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry 37:9612–9618.

    Article  PubMed  CAS  Google Scholar 

  • Long, S.B., Casey, P.J., Beese, L.S. (2002). Reaction path of protein farnesyltransferase at atomic resolution. Nature 419:645–650.

    Article  PubMed  CAS  Google Scholar 

  • Lowy, D.R., Johnson, M.R., DeClue, J.E., et al. (1993). Cell transformation by ras and regulation of its protein product. Ciba Found. Symp. 176:67–80; discussion 80–84.

    PubMed  CAS  Google Scholar 

  • Lutz, R.J., McLain, T.M., Sinensky, M. (1992). Feedback inhibition of polyisoprenyl pyrophosphate synthesis from mevalonate in vitro. Implications for protein prenylation. J. Biol. Chem. 267:7983–7986.

    PubMed  CAS  Google Scholar 

  • Macdonald, J.S., McCoy, S., Whitehead, R.P., et al. (2005). A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest. New Drugs 23:485–487.

    Article  PubMed  CAS  Google Scholar 

  • Maltese, W.A., and Sheridan, K.M. (1987). Isoprenylated proteins in cultured cells: subcellular distribution and changes related to altered morphology and growth arrest induced by mevalonate deprivation. J. Cell Physiol. 133:471–481.

    Article  PubMed  CAS  Google Scholar 

  • Marrari, Y., Crouthamel, M., Irannejad, R., et al. (2007). Assembly and trafficking of heterotrimeric G proteins. Biochemistry 46:7665–7677.

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh, S., Washietl, S., Eisenhaber, F. (2003). Protein prenyltransferases. Genome Biol. 4:212.

    Article  PubMed  Google Scholar 

  • McBride, O.W., Swan, D.C., Santos, E., et al. (1982). Localization of the normal allele of T24 human bladder carcinoma oncogene to chromosome 11. Nature 300:773–774.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, R.A., Harding, A., Roy, S., et al. (1999). Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. Oncogene 18:3862–3869.

    Article  PubMed  CAS  Google Scholar 

  • Merithew, E., Hatherly, S., Dumas, J.J., et al. (2001). Structural plasticity of an invariant hydrophobic triad in the switch regions of Rab GTPases is a determinant of effector recognition.J. Biol. Chem. 276:13982–13988.

    PubMed  CAS  Google Scholar 

  • Michaelson, D., Silletti, J., Murphy, G., et al. (2001). Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152:111–126.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D.A., Farh, L., Marshall, T.K., et al. (1994). A polybasic domain allows nonprenylated Ras proteins to function in Saccharomyces cerevisiae. J. Biol. Chem. 269:21540–21546.

    PubMed  CAS  Google Scholar 

  • Mor, A., and Philips, M.R. (2006). Compartmentalized Ras/MAPK signaling. Annu. Rev. Immunol. 24:771–800.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, U.T., Guo, Z., Delon, C. et al. (2009). Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat. Chem. Biol. 5:227–235.

    Article  PubMed  CAS  Google Scholar 

  • Nimmo, E.R., Sanders, P.G., Padua, R.A. et al. (1991). The MEL gene: a new member of the RAB/YPT class of RAS-related genes. Oncogene 6:1347–1351.

    PubMed  CAS  Google Scholar 

  • Nisimoto, Y., Freeman, J.L., Motalebi, S.A., et al. (1997). Rac binding to p67(phox). Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J. Biol. Chem. 272:18834–18841.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K., Kanemura, H., Satoh, T., et al. (2004). Identification of a novel domain of Ras and Rap1 that directs their differential subcellular localizations. J. Biol. Chem. 279:22664–226673.

    Article  PubMed  CAS  Google Scholar 

  • Novick, P., and Zerial, M. (1997). The diversity of Rab proteins in vesicle transport. Curr. Opin. Struct. Cell Biol. 9:496–504.

    Article  CAS  Google Scholar 

  • Parada, L.F., Tabin, C.J., Shih, C. (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297:474–478.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.W., and Beese, L.S. (1997). Protein farnesyltransferase. Curr. Opin. Struct. Biol. 7:873–880.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.W., Boduluri, S.R., Moomaw, J.F., et al. (1997). Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science 275:1800–1804.

    Article  PubMed  CAS  Google Scholar 

  • Paz, A., Haklai, R., Elad-Sfadia, G., et al. (2001). Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–7493.

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Leal, J.B., and Seabra, M.C. (2000). The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol. 301:1077–1087.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, S. (2003). Membrane domains in the secretory and endocytic pathways. Cell 112:507–517.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, S., and Aivazian, D. (2004). Targeting Rab GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell Biol. 5:886–896.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, S.R. (2001). Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11:487–491.

    Article  PubMed  CAS  Google Scholar 

  • Philips, M.R., and Cox, A.D. (2007). Geranylgeranyltransferase I as a target for anti-cancer drugs. J. Clin. Invest. 117:1223–1225.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, J.S., Bowers, K.E., Fierke, C.A. (2003). Mutagenesis studies of protein farnesyltransferase implicate aspartate beta 352 as a magnesium ligand. J. Biol. Chem. 278:51243–51250.

    Article  PubMed  CAS  Google Scholar 

  • Plowman, S.J., Ariotti, N., Goodall, A., et al. (2008). Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Mol. Cell Biol. 28:4377–4385.

    Article  PubMed  CAS  Google Scholar 

  • Plowman, S.J., and Hancock, J.F. (2005). Ras signaling from plasma membrane and endomembrane microdomains. Biochim. Biophys. Acta. 1746:274–283.

    Article  PubMed  CAS  Google Scholar 

  • Plowman, S.J., Muncke, C., Parton, R.G. (2005). H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 102:15500–15505.

    Article  PubMed  CAS  Google Scholar 

  • Pompliano, D.L., Schaber, M.D., Mosser, S.D., et al. (1993). Isoprenoid diphosphate utilization by recombinant human farnesyl-protein transferase. Interactive binding between substrates and a preferred kinetic pathway. Biochemistry 32:8341–8347.

    Article  PubMed  CAS  Google Scholar 

  • Prior, I.A., and Hancock, J.F. (2001). Compartmentalization of Ras proteins. J. Cell Sci. 114:1603–1608.

    PubMed  CAS  Google Scholar 

  • Prior, I.A., Harding, A., Yan, J., et al. (2001). GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell Biol. 3:368–375.

    Article  PubMed  CAS  Google Scholar 

  • Prior, I.A., Muncke, C., Parton, R.G., et al. (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Puccetti, L., Acampa, M., Auteri, A. (2007). Pharmacogenetics of statins therapy. Recent Patents Cardiovasc. Drug Discov. 2:228–236.

    Article  CAS  Google Scholar 

  • Pylypenko, O., Rak, A., Durek, T., et al. (2006). Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO J. 25:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Pylypenko, O., Rak, A., Reents, R., et al. (2003). Structure of rab escort protein-1 in complex with rab geranylgeranyltransferase. Mol. Cell 11:483–494.

    Article  PubMed  CAS  Google Scholar 

  • Quatela, S.E., and Philips, M.R. (2006). Ras signaling on the Golgi. Curr. Opin. Cell Biol. 18:162–167.

    Article  PubMed  CAS  Google Scholar 

  • Rak, A., Pylypenko, O., Niculae, A., et al. (2004). Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Cell 117:749–760.

    Article  PubMed  CAS  Google Scholar 

  • Reid, T.S., and Beese, L.S. (2004). Crystal structures of the anticancer clinical candidates R1 15777 (Tipifarnib) and BMS-214662 complexed with protein farnesyltransferase suggest a mechanism of FTI selectivity. Biochemistry 43:6877–6884.

    Article  PubMed  CAS  Google Scholar 

  • Reid, T.S., Long, S.B., Beese, L.S. (2004). Crystallographic analysis reveals that anticancer clinical candidate L-778,123 inhibits protein famesyltransferase and geranylgeranyltransferase-I by different binding modes. Biochemistry 43:9000–9008.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, Y., Brown, M.S., Goldstein, J.L. (1992). Divalent cation and prenyl pyrophosphate specificities of the protein farnesyltransferase from rat brain, a zinc metalloenzyme. J. Biol. Chem. 267:6403–6408.

    PubMed  CAS  Google Scholar 

  • Reiss, Y., Goldstein, J.L., Seabra, M.C., et al. (1990). Inhibition of purified p21ras farnesyl protein transferase by Cys-AAX tetrapeptides. Cell 62:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Reynwar, B.J., Illya, G., Harmandaris, V.A., et al. (2007). Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–464.

    Article  PubMed  CAS  Google Scholar 

  • Ridley, A.J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16:522–529.

    Article  PubMed  CAS  Google Scholar 

  • Rizzo, M.A., Kraft, C.A., Watkins, S.C., et al. (2001). Agonist-dependent traffic of raft-associated Ras and Raf-1 is required for activation of the mitogen-activated protein kinase cascade.J. Biol. Chem. 276:34928–34933.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, P.J., Mitin, N., Keller, P.J., et al. (2008). Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 283:25150–25163.

    Article  PubMed  CAS  Google Scholar 

  • Rocks, O., Peyker, A., Kahms, M., et al. (2005). An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Sabatier, C., McCormick, F. (2004). Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell Biol. 24:4943–4954.

    Article  PubMed  CAS  Google Scholar 

  • Rolfe, B.E., Worth, N.F., World, C.J., et al. (2005). Rho and vascular disease. Atherosclerosis 183:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Rotblat, B., Niv, H., Andre, S., et al. (2004). Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res. 64:3112–3118.

    Article  PubMed  CAS  Google Scholar 

  • Roth, A.F., Wan, J., Bailey, A.O., et al. (2006). Global analysis of protein palmitoylation in yeast. Cell 125:1003–1013.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S., McPherson, R.A., Reiss, A., et al. (1998). 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol. Cell Biol. 18:3947–3955.

    PubMed  CAS  Google Scholar 

  • Sakagami, Y., Isogai, A., Suzuki, A., et al. (1978). Amino acid sequence of tremerogen a-10, a peptidal hormone inducing conjugation tube formation in tremella mesenterica. Fr. Agric. Biol. Chem. 42:1301–1302.

    Article  CAS  Google Scholar 

  • Schaber, M.D., O’Hara, M.B., Garsky, V.M., et al. (1990). Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. J. Biol. Chem. 265:14701–14704.

    PubMed  CAS  Google Scholar 

  • Scheffzek, K., Ahmadian, M.R., Wiesmuller, L., et al. (1998). Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J. 17:4313–4327.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R.A., Schneider, C.J., Glomset, J.A. (1984). Evidence for post-translational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins. J. Biol. Chem. 259:10175–10180.

    PubMed  CAS  Google Scholar 

  • Schmidt, W.K., Tam, A., Fujimura-Kamada, K., et al. (1998). Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc. Natl. Acad. Sci. U.S.A. 95:11175–11180.

    Article  PubMed  CAS  Google Scholar 

  • Seabra, M.C., Mules, E.H., Hume, A.N. (2002). Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 8:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Seabra, M.C., Reiss, Y., Casey, P.J., et al. (1991). Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell 65:429–434.

    Article  PubMed  CAS  Google Scholar 

  • Sepp-Lorenzino, L., Ma, Z., Rands, E., et al. (1995). A peptidomimetic inhibitor of farnesyl protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res. 55:5302–5309.

    PubMed  CAS  Google Scholar 

  • Shalom-Feuerstein, R., Plowman, S.J., Rotblat, B., et al. (2008). K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res. 68:6608–6616.

    Article  PubMed  CAS  Google Scholar 

  • Shen, F., and Seabra, M.C. (1996). Mechanism of digeranylgeranylation of Rab proteins. Formation of a complex between monogeranylgeranyl-Rab and Rab escort protein. J. Biol. Chem. 271:3692–3698.

    Article  PubMed  CAS  Google Scholar 

  • Shilo, B.Z., and Weinberg, R.A. (1981). Unique transforming gene in carcinogen-transformed mouse cells. Nature 289:607–609.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387:569–572.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry 27:6197–6202.

    Article  PubMed  CAS  Google Scholar 

  • Sprang, S.R. (1997). G proteins, effectors and GAPs: structure and mechanism. Curr. Opin. Struct. Biol. 7:849–856.

    Article  PubMed  CAS  Google Scholar 

  • Stein, M.P., Dong, J., Wandinger-Ness, A. (2003). Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv. Drug Deliv. Rev. 55:1421–1437.

    Article  PubMed  CAS  Google Scholar 

  • Stenmark, H., and Olkkonen, V.M. (2001). The Rab GTPase family. Genome Biol. 2:REVIEWS3007.

    Article  PubMed  CAS  Google Scholar 

  • Stirtan, W.G., and Poulter, C.D. (1997). Yeast protein geranylgeranyltransferase type-I: steady-state kinetics and substrate binding. Biochemistry 36:4552–4557.

    Article  PubMed  CAS  Google Scholar 

  • Strickland, C.L., Windsor, W.T., Syto, R., et al. (1998). Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry 37:16601–16611.

    Article  PubMed  CAS  Google Scholar 

  • Swarthout, J.T., Lobo, S., Farh, L., et al. (2005). DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J. Biol. Chem. 280:31141–31148.

    Article  PubMed  CAS  Google Scholar 

  • Takai, Y., Sasaki, T., Matozaki, T. (2001). Small GTP-binding proteins. Physiol. Rev. 81:153–208.

    PubMed  CAS  Google Scholar 

  • Tamanoi, F., Gau, C.L., Jiang, C.H., et al. (2001). Protein farnesylation in mammalian cells: effects of farnesyltransferase inhibitors on cancer cells. Cell. Mol. Life Sci. 58:1636–1649.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J.S., Reid, T.S., Terry, K.L., et al. (2003). Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 22:5963–5974.

    Article  PubMed  CAS  Google Scholar 

  • Thoma, N.H., Iakovenko, A., Kalinin, A., et al. (2001). Allosteric regulation of substrate binding and product release in geranylgeranyltransferase type II. Biochemistry 40:268–274.

    Article  PubMed  CAS  Google Scholar 

  • Tian, T., Harding, A., Inder, K., et al. (2007). Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat. Cell Biol. 9:905–914.

    Article  PubMed  CAS  Google Scholar 

  • Tobin, D.A., Pickett, J.S., Hartman, H.L., et al. (2003). Structural characterization of the zinc site in protein farnesyltransferase. J. Am. Chem. Soc. 125:9962–9969.

    Article  PubMed  CAS  Google Scholar 

  • Troutman, J.M., Andres, D.A., Spielmann, H.P. (2007). Protein farnesyl transferase target selectivity is dependent upon peptide stimulated product release. Biochemistry 46:11299–11309.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya, E., Fukui, S., Kamiya, Y., et al. (1978). Requirements of chemical structure of hormonal activity of lipopeptidyl factors inducing sexual differentiation in vegetative cells of heterobasidiomycetous yeasts. Biochem. Biophys. Res. Commun. 85:459–463.

    Article  PubMed  CAS  Google Scholar 

  • Turek-Etienne, T.C., Strickland, C.L., Distefano, M.D. (2003). Biochemical and structural studies with prenyl diphosphate analogues provide insights into isoprenoid recognition by protein farnesyl transferase. Biochemistry 42:3716–3724.

    Article  PubMed  CAS  Google Scholar 

  • van den Hurk, J.A., Hendriks, W., van de Pol, D.J., et al. (1997). Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline. Hum. Mol. Genet. 6:851–858.

    Article  PubMed  Google Scholar 

  • van Meer, G., and Simons, K. (1988). Lipid polarity and sorting in epithelial cells. J. Cell Biochem. 36:51–58.

    Article  PubMed  Google Scholar 

  • van Slegtenhorst, M., de Hoogt, R., Hermans, C., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808.

    Article  PubMed  Google Scholar 

  • Vega, F.M., and Ridley, A.J. (2008). Rho GTPases in cancer cell biology. FEBS Lett. 582:2093–2101.

    Article  PubMed  CAS  Google Scholar 

  • Vetter, I.R., and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304.

    Article  PubMed  CAS  Google Scholar 

  • Wennerberg, K., Rossman, K.L., Der, C.J. (2005). The Ras superfamily at a glance. J. Cell Sci. 118:843–846.

    Article  PubMed  CAS  Google Scholar 

  • Williams, C.L. (2003). The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell. Signal. 15:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A.L., Erdman, R.A., Castellano, F., et al. (1998). Prenylation of Rab8 GTPase by type I and type II geranylgeranyl transferases. Biochem. J. 333:497–504.

    PubMed  CAS  Google Scholar 

  • Wu, M., Wu, Z.F., Kumar-Sinha, C., et al. (2004). RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells. Breast Cancer Res. Treat. 84:3–12.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W.J., Leonard, D.A., A-Cerione, R., et al. (1997). Interaction between Cdc42Hs and RhoGDI is mediated through the Rho insert region. J. Biol. Chem. 272:26153–26158.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y.W., Goody, R.S., Abagyan, R., et al. (2009). Structure of the disordered C-terminus of Rab7 GTPase induced by binding to the Rab geranylgeranyl transferase catalytic complex reveals the mechanism of Rab prenylation. J. Biol. Chem., 284:13185–13192.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, X., Zang, M., Waelde, C.A., et al. (2002). Phosphorylation of 338SSYY341 regulates specific interaction between Raf-1 and MEK1. J. Biol. Chem. 277:44996–45003.

    Article  PubMed  CAS  Google Scholar 

  • Yamane, H.K., Farnsworth, C.C., Xie, H.Y., et al. (1991). Membrane-binding domain of the small G protein G25K contains an S-(all-trans-geranylgeranyl)cysteine methyl ester at its carboxyl terminus. Proc. Natl. Acad. Sci. U.S.A. 88:286–290.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, T., Terebiznik, M., Yu, L., et al. (2006). Receptor activation alters inner surface potential during phagocytosis. Science 313:347–351.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, K., McGeady, P., Gelb, M.H. (1995). Mammalian protein geranylgeranyltransferase-I: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling. Biochemistry 34:1344–1354.

    Article  PubMed  CAS  Google Scholar 

  • Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2:107–117.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, F.L., Moomaw, J.F., Casey, P.J. (1994). Properties and kinetic mechanism of recombinant mammalian protein geranylgeranyltransferase type I. J. Biol. Chem. 269:23465–23470.

    PubMed  CAS  Google Scholar 

  • Zhang, Y.W., Li, X.Y., Koyama, T. (2000). Chain length determination of prenyltransferases: both heteromeric subunits of medium-chain (E)-prenyl diphosphate synthase are involved in the product chain length determination. Biochemistry 39:12717–12722.

    Article  PubMed  CAS  Google Scholar 

  • Zong, H., Raman, N., Mickelson-Young, L.A., et al. (1999). Loop 6 of RhoA confers specificity for effector binding, stress fiber formation, and cellular transformation. J. Biol. Chem. 274:4551–4560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Alexandrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nguyen, U.T.T., Goodall, A., Alexandrov, K., Abankwa, D. (2011). Isoprenoid Modifications. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_1

Download citation

Publish with us

Policies and ethics