Skip to main content

Abstract

The study investigates the effect of fenugreek seed polyphenol extract (FPEt) on ethanol-induced damage in rat liver. Chronic ethanol administration (6 g kg−1 day−1 × 60 days) caused liver damage that was manifested by excessive formation of thiobarbituric-acid-reactive substances, lipid hydroperoxides, and conjugated dienes, the end products of lipid peroxidation, and significant elevation of protein carbonyl groups and diminution of sulfhydryl groups, a marker of protein oxidation. Decreased activities of enzymic and non-enzymic antioxidant levels and decreased levels of thiol groups (both non-protein and protein) were observed in ethanol-treated rats. Further, ethanol significantly increased the accumulation of 4-hydroxynonenal protein adducts, nitrated and oxidized proteins in liver which was evidenced by immunohistochemistry. Administration of FPEt to ethanol-fed rats (200 mg kg−1 day−1) significantly reduced the levels of lipid peroxidation products and protein carbonyl content, increased the activities of antioxidant enzymes, and restored the levels of thiol groups. The effects of FPEt were comparable with those of a positive control, silymarin. These findings show that FPEt ameliorates the pathological liver changes induced by chronic ethanol feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando Y, Nyhlin N, Suhr O, Holmgren G, Uchida K, El Sahly M, et al. Oxidative stress is found in amyloid deposits in systemic amyloidosis. Biochem Biophys Res Commun 1997;232:497–502.

    Article  PubMed  CAS  Google Scholar 

  • Baker H, Frank O, De Angelis B, Feingold S. Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 1980;21:531–6.

    CAS  Google Scholar 

  • Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002;32:797–803.

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum AI. Introduction—serial review: alcohol, oxidative stress and cell injury. Free Radic Biol Med 2001;31:1524–6.

    Article  PubMed  CAS  Google Scholar 

  • Cohn JA, Tsai L, Friguet B, Szweda LI. Chemical characterization of a protein-4-hydroxy-2-nonenal cross-link: immunochemical detection in mitochondria exposed to oxidative stress. Arch Biochem Biophys 1996;328:158–64.

    Article  PubMed  CAS  Google Scholar 

  • Dixit P, Ghaskadbi S, Mohan H, Devasagayam TP. Antioxidant properties of germinated fenugreek seeds. Phytother Res 2005;19:977–83.

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL. Tissue sulphydryl groups. Arch Biochem Biophys 1959;82:70–7.

    Article  PubMed  CAS  Google Scholar 

  • Greenacre SA, Ischiropoulos H. Tyrosine nitration: localization, quantification, consequences for protein function and signal transduction. Free Radic Res 2001;34:541–81.

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Nair S. Antioxidant flavonoids in common Indian diet. South Asian J Prev Cardiol 1999;3:83–94.

    Google Scholar 

  • Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 2000;55:481–504.

    Article  PubMed  CAS  Google Scholar 

  • Horn HD, Burns FH. Assay of glutathione reductase activity. In: Bergmeyer HV, editor. Methods of enzymatic analysis. New York: Academic Press; 1978. p. 142.

    Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992;298:431–7.

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZY, Hunt JV, Wolf SP. Detection of lipid hydroperoxides using the FOX method. Anal Biochem 1999;202:384–9.

    Article  Google Scholar 

  • Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 1984;21:130–2.

    CAS  Google Scholar 

  • Kaviarasan S, Anuradha CV. Fenugreek (Trigonella foenum graecum) seed polyphenols protect liver from alcohol toxicity: a role on hepatic detoxification system and apoptosis. Die Pharm 2007;62:299–304.

    CAS  Google Scholar 

  • Kaviarasan S, Vijayalakshmi K, Anuradha CV. Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Food Hum Nutr 2004;59:143–7.

    Article  CAS  Google Scholar 

  • Kaviarasan S, Ramamurty N, Gunasekaran P, Varalakshmi E, Anuradha CV. Fenugreek seed extract prevents ethanol-induced toxicity and apoptosis in Chang liver cells. Alcohol 2006;41:267–73.

    Google Scholar 

  • Kaviarasan S, Naik GH, Gangabhagirathi R, Anuradha CV, Priyadarsini KI. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem 2007a;103:31–37.

    Article  CAS  Google Scholar 

  • Kaviarasan S, Viswanathan P, Anuradha CV. Fenugreek seed (Trigonella foenum graecum) polyphenols inhibit ethanol-induced collagen and lipid accumulation in rat liver. Cell Biol Toxicol 2007b;23:373–83.

    Article  PubMed  CAS  Google Scholar 

  • Levine RL. Carbonyl modified proteins in cellular regulation, aging and disease. Free Radic Biol Med 2002;32:790–6.

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content of oxidatively modified proteins. Methods in enzymology, vol. 186. Florida: Academic; 1990. p. 464–78.

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin’s-Phenol reagent. J Biol Chem 1951;193:265–75.

    PubMed  CAS  Google Scholar 

  • Mato JM, Camara J, Fernandez de Paz J, Caballeria L, Coll S, Caballero A, et al. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized placebo-controlled, double blind, multicentre clinical trial. J Hepatol 1999;30:1081–9.

    Article  PubMed  CAS  Google Scholar 

  • Niehaus WG, Samuelsson B. Formation of malondialdehyde from phospholipids arachidonate during microsomal lipid peroxidation. Eur J Biochem 1968;6:126–30.

    Article  PubMed  CAS  Google Scholar 

  • Ohhira M, Ohtake T, Matsumoto A, Saito H, Ikuta K, Fujimoto Y, et al. Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver diseases. Alcohol Clin Exp Res 1998;22:145–9.

    Article  Google Scholar 

  • Omaye ST, Tarnbull JD, Sauberlich HE. Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Method Enzymol 1991;62:1–11.

    Google Scholar 

  • Paradis V, Kollinger M, Fabre M, Holstege A, Poynard T, Bedossa P. In situ detection of lipid peroxidation by products in chronic liver disease. Hepatology 1997;26:135–42.

    Article  PubMed  CAS  Google Scholar 

  • Pares A, Planas R, Torres M, Caballeria J, Viver JM, Acero D, et al. Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol 1998;28:615–21.

    Article  PubMed  CAS  Google Scholar 

  • Rao KS, Recknagel RO. Early onset of lipoperoxidation in rat liver after carbon tetrachloride administration. Exp Mol Pathol 1968;9:271–8.

    Article  PubMed  CAS  Google Scholar 

  • Rolla R, Vay D, Mottaran E, Parodi M, Traverso N, Arico S, et al. Detection of circulating antibodies against malondialdehyde-acetaldehyde adducts in patients with alcohol-induced liver disease. Hepatology 2000;31:878–84.

    Article  PubMed  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973;179:588–90.

    Article  PubMed  CAS  Google Scholar 

  • Sedlack I, Lindsay RH. Estimation of total protein sulfhydryl groups in tissues with Ellman’s reagent. Anal Biochem 1968;25:192–205.

    Article  Google Scholar 

  • Shang M, Cai S, Han J, Li J, Zhao Y, Zheng J, et al. Studies on flavonoids from fenugreek (Trigonella foenum graecum L). Zhongguo Zhong Yao Za Zhi. 1998a;23:614–6.

    PubMed  CAS  Google Scholar 

  • Shang M, Cai S, Wang X. Analysis of amino acids in Trigonella foenum graecum seeds. Zhong Yao Cai 1998b;21:188–90.

    PubMed  CAS  Google Scholar 

  • Sharma RD. Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutr Res 1986;6:1353–64.

    Article  Google Scholar 

  • Sharma RD, Sarkar A, Hazra DK, Misra B. Hypolipidaemic effect of fenugreek seeds: a chronic study in non-insulin dependent diabetic patients. Phytother Res 1996;10:332–4.

    Article  Google Scholar 

  • Singleton SL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic—phosphotungstic acid reagents. Am J Enol Vitic 1965;16:144–58.

    CAS  Google Scholar 

  • Sinha AK. Colorimetric assay of catalase. Anal Biochem 1972;47:389–94.

    Article  PubMed  CAS  Google Scholar 

  • Suja Pandian R, Anuradha CV, Viswanathan P. Gastroprotective effect of fenugreek seeds (Trigonella foenum graecum) on experimental gastric ulcer in rats. J Ethnopharmacol 2002;81:393–7.

    Article  PubMed  Google Scholar 

  • Sur P, Das M, Gomes A, Vedasiromoni JR, Sahu NP, Banerjee S, et al. Trigonella foenum graecum (Fenugreek) seed extract as an antineoplastic agent. Phytother Res 2001;15:257–9.

    Article  PubMed  CAS  Google Scholar 

  • Thirunavukkarasu V, Anuradha CV, Viswanathan P. Protective effect of fenugreek (Trigonella foenum graecum) seeds in experimental ethanol toxicity. Phytother Res 2003;17:737–43.

    Article  PubMed  CAS  Google Scholar 

  • Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman ER. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA 1994;91:2616–20.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto H, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J 2001;15:1335–49.

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Allenbrand B, Sun GY. Dietary supplementation of grape polyphenols and chronic ethanol administration on LDL oxidation and platelet function in rats. Life Sci 1998;63:383–90.

    Article  PubMed  CAS  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 1996;93:2696–2701.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Anuradha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this paper

Cite this paper

Kaviarasan, S., Sundarapandiyan, R., Anuradha, C.V. (2007). Protective action of fenugreek (Trigonella foenum graecum) seed polyphenols against alcohol-induced protein and lipid damage in rat liver. In: Hunt, C. (eds) Proceedings of the VIIIth Conference of the International Society for Trace Element Research in Humans (ISTERH), the IXth Conference of the Nordic Trace Element Society (NTES), and the VIth Conference of the Hellenic Trace Element Society (HTES), 2007. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9056-1_9

Download citation

Publish with us

Policies and ethics