Skip to main content

An Overview of Purple Bacteria: Systematics, Physiology, and Habitats

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Anoxygenic phototrophic purple bacteria are a major group of photosynthetic microorganisms widely distributed in nature, primarily in aquatic habitats. Nearly 50 genera of these organisms are known and some have become prime model systems for the experimental dissection of photosynthesis. Purple sulfur bacteria differ from purple nonsulfur bacteria on both metabolic and phylogenetic grounds, but species of the two major groups often coexist in illuminated anoxic habitats in nature. Purple sulfur bacteria are strong photoautotrophs and capable of limited photoheterotrophy, but they are poorly equipped for metabolism and growth in the dark. By contrast, purple nonsulfur bacteria, nature’s preeminent photoheterotrophs, are capable of photoautotrophy, and possess diverse capacities for dark metabolism and growth. Several purple bacteria inhabit extreme environments, including extremes of temperature, pH, and salinity. Collectively, purple bacteria are important phototrophs because they (1) consume a toxic substance, H2S, and contribute organic matter to anoxic environments by their autotrophic capacities; (2) consume organic compounds, primarily non-fermentable organic compounds, in their roles as photoheterotrophs; and (3) offer scientists in the photosynthesis community a smörgasbord of molecular diversity for the study of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BChl:

bacteriochlorophyll

LH:

light-harvesting

Rba.:

Rhodobacter

Rcy.:

Rhodocyclus

Rfx.:

Rhodoferax

Rps.:

Rhodopseudomonas

Rsp.:

Rhodospirillum

Tch.:

Thermochromatium

References

  • Achenbach LA, Carey JR and Madigan MT (2001) Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67: 2922–2926

    Article  PubMed  CAS  Google Scholar 

  • Biebl H and Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes — a Handbook on Habitats, Isolation and Identification of Bacteria, pp 267–273. Springer-Verlag, New York

    Google Scholar 

  • Blankenship RE, Madigan MT and Bauer CE (1995) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 847–870. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI and Imhoff JF (2000) Thioalkalicococcus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Bacteriol 50: 2157–2163

    Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF, Süling J and Mityushina L (1999) Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49: 697–703

    PubMed  Google Scholar 

  • Burke CM and Burton HR (1988) Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia 165: 13–23

    Article  CAS  Google Scholar 

  • Caldwell DE and Tiedje JM (1975a) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can J Microbiol 21: 362–376

    PubMed  CAS  Google Scholar 

  • Caldwell DE and Tiedje JM (1975b) The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can J Microbiol 21: 377–385

    PubMed  CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park. Microbial Ecology 3: 79–105

    Article  CAS  Google Scholar 

  • Castenholz RW and Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Phototrophic Bacteria, pp 87–103. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25–68

    Article  CAS  Google Scholar 

  • Cooper DE, Rands MB and Woo C-P (1975) Sulfide reduction in fellmongery effluent by red sulfur bacteria. J Water Pollution Control Fed 47: 2088–2100

    CAS  Google Scholar 

  • Czeczuga B (1968) Primary production of the purple sulphuric bacteria, Thiopedia rosea Winogr. (Thiorhodaceae). Photosynthetica 2: 161–166

    Google Scholar 

  • Ehrenreich A and Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60: 4517–4526

    PubMed  CAS  Google Scholar 

  • Favinger J, Stadtwald R and Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerantcyst-forming anoxygenic photosynthetic bacterium. Ant van Leeuwenhoek 55: 291–296

    Article  CAS  Google Scholar 

  • Frigaard NU and Bryant DA (2004) Seeing green bacteria in a new light: Genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Garcia D, Parot P, Verméglio A and Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. Biochim Biophys Acta 850: 390–395

    Article  CAS  Google Scholar 

  • Gibson J and Harwood CS (1995) Degradation of aromatic compounds by nonsulfur purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 991–1003. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Glaeser J and Overmann J (1999) Selective enrichment and characterization of Roseospirillumparvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171: 405–416

    Article  PubMed  CAS  Google Scholar 

  • Griffin BM, Schott J and Schink B (2007) Nitrite, an electron donor for anoxygenic photosynthesis. Science 316: 1870

    Article  PubMed  CAS  Google Scholar 

  • Guerrero R, Montesinos E, Pedrós-Alió C, Esteve I, Mas J, van Gemerden H, Hofman PAG and Bakker JF (1985) Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30: 919–931

    CAS  Google Scholar 

  • Gurgen V, Kirchner G and Pfennig N (1976) Fermentation of pyruvate by 7 species of phototrophic purple bacteria. Z Allg Mikrobiolo 16: 573–586

    Article  Google Scholar 

  • Hansen TA and van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Hansen TA and Veldkamp H (1973) Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch Mikrobiol 92: 45–58

    Article  PubMed  CAS  Google Scholar 

  • Heda GD and Madigan MT (1988) Thermal properties and oxygenase activity of ribulose-1,5-bisphosphate carboxylase from the thermophilic purple bacterium, Chromatium tepidum. FEMS Microbiol Lett 51: 45–50

    Article  CAS  Google Scholar 

  • Heda GD and Madigan MT (1989) Purification and characterization of the thermostable ribulose-1,5-bisphosphate carboxylase/oxygenase from the thermophilic purple bacterium Chromatium tepidum. Eur J Biochem 184: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Holm HW and Vennes JW (1970) Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl Microbiol 19: 988–996

    PubMed  CAS  Google Scholar 

  • Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF and Madigan MT (2004) International Committee on Systematics of Prokaryotes Subcommitteee on the taxonomy of phototrophic bacteria. Minutes of the meetings, 27 August 2003, Tokyo, Japan. Int J Syst Evol Microbiol 54: 1001–1003

    Article  Google Scholar 

  • Imhoff JF, Hashwa F and Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84: 381–388

    Google Scholar 

  • Imhoff JF, Sahl HG, Soliman GSH and Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1: 219–234

    Article  CAS  Google Scholar 

  • Imhoff JF, Hiraishi A and Süling J (2005) Anoxygenic phototrophic bacteria. In: Brenner DJ, Krieg NR and Staley JT (eds) Bergey’s Manual of Systematic Bacteriology, 2nd ed, Vol 2, part A, pp 119–132. Springer, New York

    Google Scholar 

  • Jones BR (1956) Studies of pigmentednon-sulfur purple bacteria in relation to cannery waste lagoon odors. Sewage Ind Wastes 28: 883–893

    Google Scholar 

  • Jung DO, Achenbach LA, Karr EA, Takaichi S and Madigan MT (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182: 236–243

    Article  PubMed  CAS  Google Scholar 

  • Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135

    Article  Google Scholar 

  • Karr EL, Sattley WM, Jung DO, Madigan MT and Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69: 4910–4914

    Article  PubMed  CAS  Google Scholar 

  • Kimble-Long LK and Madigan MT (2002) Irradiance effects on growth and bacteriochlorophyll content of phototrophic heliobacteria, purple and green photosynthetic bacteria. Photosynthetica 40: 629–632

    Article  CAS  Google Scholar 

  • Kobayashi M (1975) Role of photosynthetic bacteria in foul water purification. Prog Water Technol 7: 309–315

    CAS  Google Scholar 

  • Kondratieva EN, Zhukov VG, Ivanovsky RN, Petushkova YP and Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Kramer H and Amesz J (1996) Antenna organization in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum. Photosynth Res 49: 237–244

    Article  CAS  Google Scholar 

  • Kulichevskaya IS, Guzev VS, Gorlenko VM, Liesack W and Dedysh SN (2006) Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. Intl J Syst Evol Microbiol 56: 1397–1402

    Article  CAS  Google Scholar 

  • Mack EE, Mandelco L, Woese CR and Madigan MT (1993) Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodospirillum species. Arch Microbiol 160: 363–371

    Article  CAS  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315

    Article  PubMed  Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36: 222–227

    CAS  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: AJB Zehnder (ed) Biology of Anaerobic Microorganisms, pp 39–111, John Wiley & Sons, New York

    Google Scholar 

  • Madigan MT (1995) Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 915–928. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Madigan MT (1998) Isolation and characterization of psychrophilic purple bacteria from Antarctica. In: Peschek GA, Löffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 699–706. Plenum, New York

    Google Scholar 

  • Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76: 157–171

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT and Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supportedby ‘oxidant-dependent’ sugar fermentation. Arch Microbiol 117: 119–122

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT and Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137: 524–530

    PubMed  CAS  Google Scholar 

  • Madigan MT, Cox SS and Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157: 73–78

    PubMed  CAS  Google Scholar 

  • Madigan MT, Jung DO, Woese CR and Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch. Microbiol. 173: 269–277

    Article  PubMed  CAS  Google Scholar 

  • McClain J, Rollo DR, Rushing BG and Bauer CE (2002) Rhodospirillum centenum utilizes separate motor and switch components to control lateral and polar flagellum rotation. J Bacteriol 184: 2429–2438

    Article  PubMed  CAS  Google Scholar 

  • Milford AD, Achenbach LA, Jung DO and Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174: 18–27

    Article  PubMed  CAS  Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K and Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T and Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer. Proc Natl Acad Sci USA 97: 13561–13566

    Article  PubMed  CAS  Google Scholar 

  • Nozawa T and Madigan MT (1991) Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chromatium tepidum. J Biochem 110: 588–594

    PubMed  CAS  Google Scholar 

  • Nozawa T, Fukada T, Hatano M and Madigan MT (1986) Organization of intracytoplasmic membranes in a novel thermophilic purple photosynthetic bacterium as revealed from absorption, circular dichroism, and emission spectra. Biochim Biophys Acta 852: 191–197

    Article  CAS  Google Scholar 

  • Overmann J and Schubert K (2002) Phototrophic consortia: Model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Beatty JT and Hall KJ (1994) Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake. FEMS Microbiol Ecol 15: 309–320

    Article  CAS  Google Scholar 

  • Overmann J, Beatty JT and Hall KJ (1996) Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake. Appl Environ Microbiol 62: 3251–3258

    PubMed  CAS  Google Scholar 

  • Overmann J, Hall KJ, Northcote TG and Beatty JT (1999) Grazing of the copepod Diaptomus connexus on purple sulphur bacteria in a meromictic salt lake. Environ Microbiol 1: 213–221

    Article  PubMed  CAS  Google Scholar 

  • Pattaragulwanit K, Brune DC, Trüper HG and Dahl C (1998) Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169: 434–444

    Article  PubMed  CAS  Google Scholar 

  • Permentier HP, Neerken S, Overmann J and Amesz J (2001) A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40: 5573–5578

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1967) Photosynthetic bacteria. Ann Rev Microbiol 21: 285–324

    Article  CAS  Google Scholar 

  • Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99: 597–602

    PubMed  CAS  Google Scholar 

  • Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100: 197–206

    Article  CAS  Google Scholar 

  • Pfennig N (1975) The phototrophic bacteria and their role in the sulfur cycle. Plant Soil 43: 1–16

    Article  CAS  Google Scholar 

  • Pfennig N (1978a) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 3–18. Plenum Press, New York

    Google Scholar 

  • Pfennig N (1978b) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shape, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28: 283–288

    CAS  Google Scholar 

  • Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 97–116. Springer-Verlag, Heidelberg

    Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP and Blankenship RE (2003) Evolution of photosynthetic prokaryotes: A maximum-likelihood mapping approach. Phil Tran Roy Soc Lond B Biol Sci 358: 223–230

    Article  Google Scholar 

  • Resnick SM and Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65: 165–170

    Article  CAS  Google Scholar 

  • Satoh T, Hoshino Y and Kitamura H (1976) Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch Microbiol 108: 265–269

    Article  PubMed  CAS  Google Scholar 

  • Sattley WM and Madigan MT (2006) Isolation, characterization and ecology of cold-active, chemolithotrophic sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72: 5562–5568

    Article  PubMed  CAS  Google Scholar 

  • Schultz JE and Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149: 181–190

    PubMed  CAS  Google Scholar 

  • Siefert E and Koppenhagen VB (1982) Studies on the vitamin B12 auxo trophy of Rhodocydus purpureus and two other vitamin B12-requiring purple nonsulfur bacteria. Arch Microbiol 132: 173–178

    Article  CAS  Google Scholar 

  • Siefert E, Irgens RL and Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35: 38–44

    PubMed  CAS  Google Scholar 

  • Sojka GA (1978) Metabolism of nonaromatic organic compounds. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 707–718. Plenum Press, New York

    Google Scholar 

  • Stadtwald-Demchick R, Turner FR and Gest H (1990) Rhodopseudomonas cryptolactis, sp. nov., anew thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiol Lett 71: 117–121

    Article  CAS  Google Scholar 

  • Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 885–914. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Takahashi M and Ichimura S (1968) Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol Oceanog 13: 644–655

    Article  Google Scholar 

  • Takaichi S, Jung DO and Madigan MT (2001) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis. Photosynth Res 67: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Trüper HG (1978) Sulfur metabolism. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 677–690. Plenum Press, New York

    Google Scholar 

  • Trüper HG (1981) Versatility of carbon metabolism in phototrophic bacteria. In: Dalton H (ed) Microbial Growth on C1 Compounds, pp 116–121. Heyden, London

    Google Scholar 

  • Trüper HG and Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Phil Trans Roy Soc Lond B 298: 529–542

    Article  Google Scholar 

  • Trüper HG and Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds.) The Prokaryotes, a Handbook on Habitatss, Isolation, and Identification of Bacteria, pp 299–312. Springer-Verlag, New York

    Google Scholar 

  • Uffen RL and Wolfe RS (1970) Anaerobic growth of purple nonsulfur bacteria under dark conditions. J Bacteriol 104: 462–472

    PubMed  CAS  Google Scholar 

  • van Gemerden H (1968) On the ATP generation by Chromatium in darkness. Arch Mikrobiol 64: 118–124

    Article  PubMed  Google Scholar 

  • van Gemerden H and Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 50–85. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Arch Mikrobiol 3: 1–112

    Article  Google Scholar 

  • van Niel CB (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8: 1–118

    PubMed  Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 3–15. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Zengler K, Heider J, Rossello-Mora R and Widdel F (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172: 204–212

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Madigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Madigan, M.T., Jung, D.O. (2009). An Overview of Purple Bacteria: Systematics, Physiology, and Habitats. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_1

Download citation

Publish with us

Policies and ethics