Skip to main content

Abstract

Several marine organisms living in the inter-tidal zone show tidal rhythms. The endogenous nature of the rhythm enables organisms to determine time accurately even when the moon is hidden for two to three months because of perpetually overcast sky. While the basic characteristics of the rhythms are endogenously determined, it is fine-tuned by high and low tides caused by gravitational pull exerted by sun and moon. Hydrostatic pressure, turbulence of the waves and resultant mechanical agitation have all been proposed to be time cues. The fundamental nature of the timing mechanisms of intertidal organisms has been controversial for a long time. Empirical evidence strongly suggests a circadian component in activity appearing superimposed on a tidal component. A close relationship between tidal rhythms and circadian rhythms has also been inferred from the fact that tidal rhythms are also, to a large extent, refractory to temperature. While in most cases the ecological importance of the lunar cyclic phenomena is quite obvious, results of a few early studies suggest that tidal, circadian and lunar rhythms are intricately connected conferring an adaptive value to organisms inhabiting the edges of the oceans. We review here some of the major findings from early studies that may be relevant to understanding the basic nature of tidal rhythms. We critically review these studies in order to bring some clarity in the way we view tidal rhythms, and to understand their relationship with circadian rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama, T. 2004. Entrainment of the circatidal swimming activity rhythm in the cumacean Dimorphostylis asiatica (Crustacea) to 12.5-hour hydrostatic pressure cycles. Zool. Sci. 21: 29–38.

    Article  PubMed  Google Scholar 

  • Barlow, R. B. 1983. Circadian rhythms in the Limulus visual system. J. Neurosci. 13: 31–41.

    Google Scholar 

  • Blume, J., Bünning, E. and Müller, D. 1962. Periodenanalyse von Aktivitätsrhythmen bei Carcinus maenas. Biol. Z. 81: 569–575.

    Google Scholar 

  • Bohn, G. 1903. Sur les mouvements oscillatoires des Convoluta roascoffensis. C. R. Acad. Sci. (Paris) 137: 576–578.

    Google Scholar 

  • Bohn, G. 1904. Periodicité vitale des animaux soumis aux oscillations du niveau des mers. C.R. Acad. Sci. (Paris) 139: 610–611.

    Google Scholar 

  • Bohn, G. 1906. As cited in Bünning, 1973.

    Google Scholar 

  • Brown, F. A., Bennett, M. F. and Webb, H. M. 1953. Endogenously regulated diurnal and tidal rhythms in metabolic rate in Uca pugnax. Biol. Bull. 105: 371.

    Google Scholar 

  • Bünning, E. 1969. Common features of photoperiodism in plants and animals. Photochem. Photobiol. 9: 219–228.

    Article  PubMed  Google Scholar 

  • Bünning, E. 1973. The Physiological Clock. 3rd rev Engl ed. pp. 258. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Bünning, E. and Müller, D. 1962. Wie Messen Organismen lunare Zyklen? Z. Naturforsch. 16b: 391–395.

    Google Scholar 

  • Chabot, C. C., Kent, J. and Watson, W. H. III. 2004. Circatidal and circadian rhythms of locomotion in Limulus polyphemus. Biol. Bull. 207: 72–75.

    Article  PubMed  Google Scholar 

  • Chandrashekaran, M. K. 1963. Studies on the basal metabolism of tropical poikilotherms. Unpublished Ph.D. thesis. University of Madras, Madras, India.

    Google Scholar 

  • Chandrashekaran, M. K. 1965. Persistent tidal and diurnal rhythms of locomotor activity and oxygen consumption in Emerita asiatica. (M-Edw). Z. vergl. Physiol. 50: 137–150.

    Article  Google Scholar 

  • Chandrashekaran, M. K. 2005. Time in the Living World. pp. 197. India: University Press.

    Google Scholar 

  • Chandrashekaran, M. K. and Loher, W. 1969. The relationship between the intensity of light pulses and the extent of phase shifts of circadian rhythms in the eclosion rate of Drosophila pseudoobscura. J. Exp. Zool. 172: 147–152.

    Article  PubMed  Google Scholar 

  • Cole, L. C. 1957. Biological clock in the unicorn. Science. 125: 874–876.

    Article  PubMed  Google Scholar 

  • Cummings, S. M. and Morgan, E. 2001. Time-keeping system of the eel pout, Zoarces viviparous. Chronobiol. Int. 18: 27–46.

    Article  PubMed  Google Scholar 

  • Daan, S. and Koene, P. 1981. On the timing of foraging flights by oystercatchers Haematopus ostralegus on tidal mudflats. Neth. J. Sea Res. 15: 1–22.

    Article  Google Scholar 

  • de la Iglesia H., Rodrguez, E. M. and Dezi, R. E. 1994. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol. Behav. 55: 913–919.

    Article  PubMed  Google Scholar 

  • Ellers, O. 1987. Passive orientation of benthic animals in flow. In: Signposts in the Sea. Proceedings of a Multidisciplinary Workshop on Marine Animal Orientation and Migration. W. F. Herrenkind and A. B. Thistle, eds, pp. 45–68. Tallahassee, FL: Department of Biological Sciences, Florida State University.

    Google Scholar 

  • Ellers, O. 1988. Locomotion via swash-riding in the clam Donax varaiablis. Ph.D. Dissertation, Duke University, Durham, NC.

    Google Scholar 

  • Ellers, O. 1995a. Behavioral control of swash-riding in the clam Donax variabilis. Biol. Bull. 189: 120–127.

    Article  Google Scholar 

  • Ellers, O. 1995b. Discrimination among wave-generated sounds by a swash-riding clam. Biol. Bull. 189: 128–137.

    Article  Google Scholar 

  • Enright, J. T. 1961. Pressure sensitivity of an amphipod. Science 133: 758–760.

    Article  PubMed  Google Scholar 

  • Enright, J. T. 1963. The tidal rhythm of activity of a sand-beach amphipod. Z. vergl. Physiol. 46: 276–313.

    Article  Google Scholar 

  • Enright, J. T. 1972. A virtuoso isopod: circa-lunar rhythms and their fine structure. J. Comp. Physiol. 77: 141–162.

    Article  Google Scholar 

  • Erkert, H. G. 1974. Einfluss des Mondlichtes auf die Aktivitätsperiodik nachtaktiver Säugetiere. Oecologia (Berlin) 14: 269–287.

    Article  Google Scholar 

  • Fingerman, M. 1960. Tidal rhythmicity in marine organisms. Cold Spring Harb. Symp. Quant. Biol. 25: 481–489.

    PubMed  Google Scholar 

  • Gamble, F. W. and Keeble, F. 1903. The bionomics of Convoluta roscoffensis, with special reference to its green cells. Proc. Roy Soc. B. 72: 93–98.

    Article  Google Scholar 

  • Gibson, R. N. 1965. Rhythmic activity in littoral fish. Nature 207: 544–545.

    Article  Google Scholar 

  • Gibson, R. N. 1967. Experiments on tidal rhythms of Blennius pholis. J. Mar. Biol. Assoc. UK 47: 97–111.

    Article  Google Scholar 

  • Gibson, R. N. 1973. Tidal and circadian activity rhythms in juvenile plaice. Pleuronectes platessa. Mr. Biol. 22: 379–386.

    Google Scholar 

  • Gray, D. R. and Hodgson, A. N. 1999. Endogenous rhythms of locomotor activity in the high-shore limpet Helcion pectunculus (Patellogastropoda). Anim. Behav. 57: 387–391.

    Article  PubMed  Google Scholar 

  • Gwinner, E. 1973. Circannual rhythms in birds: their interaction with circadian rhythms and environmental photoperiod. J. Repod. Fertil. (Suppl) 19: 51–65.

    Google Scholar 

  • Hartland-Rowe, R. 1955. Lunar rhythm in the emergence of an Ephemeropteran. Nature (London) 176: 657.

    Article  Google Scholar 

  • Hartland-Rowe, R. 1958. The biology of a tropical mayfly Povilla adusta Navas (Ephemeroptera, Polymitarcidae) with special reference to the lunar rhythm in emergence. Revue. Zool. Bot. Afr. 58: 185–202.

    Google Scholar 

  • Hauenschild, C. 1960. Lunar periodicity. Cold Spring Harb. Symp. Quant. Biol. 25: 491–497.

    PubMed  Google Scholar 

  • Honnegger, H. -W. 1973. Rhythmic motor activity responses of the California fiddler crab Uca crenulata to artificial light conditions. Mar. Biol. 18: 19–31.

    Article  Google Scholar 

  • Klapow, L. A. 1972. Natural and artificial rephasing of a tidal rhythm. J. Comp. Physiol. 79: 233–258.

    Article  Google Scholar 

  • Korringa, P. 1957. Lunar periodicity. Mem. Geol. Soc. Am. 67: 917–934.

    Google Scholar 

  • Martin, L. 1907. La memoire chez Convoluta roscoffensis. C. R. Acad. Sci. (Paris) 145: 555–557.

    Google Scholar 

  • Mehta, T. S. and Lewis, R. D. 2000. Quantitative tests of a dual circalunidian clock model for tidal rhythmicity in the sand beach isopod Cirolana cookii. Chronobiol. Int. 17: 29–41.

    Article  PubMed  Google Scholar 

  • Mori, S. 1938. Donax semigranosus Dkr and the experimental analysis of its behaviour on the flood tide. Zool. Mag. Tokyo 50: 1–12.

    Google Scholar 

  • Morrison, D. W. 1978. Lunar phobia in a neotropical bat Artibeus jamaicensis. Anim. Behav. 26: 852–855.

    Article  Google Scholar 

  • Naylor, E. 1996. Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic motor activity of Carcinus maenas. Chronobiol. Int. 13: 153–161.

    Article  PubMed  Google Scholar 

  • Neumann, D. 1963. Ãœber die Steuerung der lunaren Schwärmperiode der Mücke Clunio marinus. Verh. Dt. Zool. Ges. Wien. 1962: 275–285.

    Google Scholar 

  • Neumann, D. 1966a. Die intraspezifische variabilität der lunaren und täglichen Sclüpfzeiten von Clunio marinus (Diptera: Chironomidae). Verh. Dt. Zool. Ges. Jena. 1965: 223–233.

    Google Scholar 

  • Neumann, D. 1966b. Der lunare und tägliche Sclüpfperiodik der Mücke Clunio steuerung und abstimmung auf die Gezeitenperiodik. Z. Vergl. Physiol. 53: 1–61.

    Article  Google Scholar 

  • Neumann, D. 1989. Circadian components of semilunar and lunar timing mechanisms. J. Biol. Rhythms 4: 285–294.

    Article  PubMed  Google Scholar 

  • Palmer, J. D. 1989. Comparative studies of tidal rhythms. VIII. A translocation experiment involving circalunidian rhythms. Mar. Behav. Physiol. 14: 231–243.

    Article  Google Scholar 

  • Palmer, J. D. 1995. Review of the dual-clock control of tidal rhythms and the hypothesis that the same clock governs both circatidal and circadian rhythms. Chronobiol. Int. 12: 299–310.

    Article  Google Scholar 

  • Palmer, J. D. 1997. Dueling hypothesis: circatidal versus circalunidian battle basics. Chronobiol. Int. 14: 337–346.

    Article  PubMed  Google Scholar 

  • Palmer, J. D. and Williams, B. G. 1986. Comparative study of tidal rhythms: the dual clock control of the locomotor rhythms of two decapod crustaceans. Mar. Behav. Physiol. 12: 269–278.

    Article  Google Scholar 

  • Reid, D. G. and Naylor, E. 1989. Are there separate circatidal and circadian clocks in the shore crab Carcinus maenas? Mar. Ecol. Prog. 52: 1–6.

    Article  Google Scholar 

  • Rudloe, A. 1980. The breeding behaviour and patterns of movement of horseshoe crabs. Limulus polyphemus, in the vicinity of breeding beaches in Apalachee Bay, FL. Estuaries 3: 177–183.

    Article  Google Scholar 

  • Saigusa, M. 2002. Hatching controlled by the circadian clock and the role of the medulla terminalis in the optic peduncle of the eyestalk, in an estuarine crab Sesarma haematocheir. J. Exp. Biol. 205: 3487–3504.

    PubMed  Google Scholar 

  • Saunders, D. S. 1976. Insect Clocks. pp. 279. Oxford: Pergamon.

    Google Scholar 

  • Turner, H. J. and Belding, D. L. 1957. The tidal migration of Donax variables. Contribution No. 886. Woodshole, MA.

    Google Scholar 

  • Usman, K., Habersetzer, J., Subbaraj, R., Gopalakrishnaswamy, G. and Paramanandam, K. 1980. Behaviour of bats during a lunar eclipse. Behav. Ecol. Sociobiol. 7: 79–81.

    Article  Google Scholar 

  • Youthed, G. J. and Moran, V. C. 1969a. The solar-day activity rhythm of Myrmeleontid larvae. J. Insect Physiol. 15: 1103–1116.

    Article  Google Scholar 

  • Youthed, G. J. and Moran, V. C. 1969b. The lunar-day activity rhythm of Myrmeleontid larvae. J. Insect Physiol. 15: 1259–1271.

    Article  Google Scholar 

  • Wikelski, M. and Hau, M. 1995. Is there an endogenous tidal rhythm in marine iguanas? J. Biol. Rhythms 10: 335–350.

    Article  PubMed  Google Scholar 

  • Williams, B. G. and Pilditch, C. A. 1997. The entrainment of persistent tidal rhythmicity in a filter-feeding bivalve using cycles of food availability. J. Biol. Rhythms 12: 173–181.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Chandrashekaran, M.K., Sharma, V.K. (2008). Tidal Rhythms. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_9

Download citation

Publish with us

Policies and ethics