Skip to main content
Log in

Persistent tidal and diurnal rhythms of locomotory activity and oxygen consumption in Emerita asiatica (M.-EDW.)

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    The oxygen consumption of the sand crab, Emerita asiatica, when estimated employing solitary specimens showed an unmistakable persistent tidal rhythm.

  2. 2.

    Numbers of 4 and 5 crabs even when huddled together in the respiration chambers showed the rhythmicity in their metabolic rates indicating mutual synchronisation of individual oscillations.

  3. 3.

    In newly moult crabs, in spite of the intensified level of metabolism accompanying the process of moulting, the tidal rhythms were displayed in the metabolic rates.

  4. 4.

    Simultaneous estimations of the swimming activity employing a vertically moving cage device and the oxygen consumption of individual crabs further confirmed the persistence of rhythms.

  5. 5.

    The activity of Emerita coinciding with the high tide at night was considerably enhanced. It was clear that this exaggerated nightly activity was due to the superimposition of a diurnal rhythm an a tidal rhythm.

  6. 6.

    The rhythms in the locomotory activity waned after the crabs had been in the laboratory for 3–4 days.

  7. 7.

    The behaviour of Emerita, as seen in the activity records and oxygen consumption estimations made in the present study, is reminiscent of its behaviour in nature relative to the tide.

  8. 8.

    The adaptive significance of such rhythmic behaviour to the continued existence of littoral animals is evident.

Zusammenfassung

  1. 1.

    Emerita asiatica hat einen deutlichen Gezeitenrhythmus des Sauerstoffverbrauchs, der auch unter Laboratoriumsbedingungen weiterläuft.

  2. 2.

    Werden mehrere Individuen in Gemeinschaft gehalten, so zeigt sich eine gegenseitige Synchronisation hinsichtlich dieser Stoffwechselschwankungen.

  3. 3.

    Frisch gehäutete Individuen zeigen, trotz des verstärkten Stoffwechsels während der Häutung, diese Gezeitenrhythmik ebenfalls.

  4. 4.

    Gleichzeitige Messung der Schwimmaktivität und des Stoffwechsels bestätigte das Fortdauern der Rhythmik unter Laboratoriums bedingungen.

  5. 5.

    Zu den Zeiten nächtlicher Flut ist die Bewegungsaktivität erheblich verstärkt. Das beruht deutlich auf einer Überlagerung der diurnalen Rhythmik mit der Gezeitenrhythmik.

  6. 6.

    Nach 3–4 Tagen des Laboratoriumsaufenthaltes zeigt sich bei der Bewegungsaktivität eine Dämpfung der Rhythmik.

  7. 7.

    Das Verhalten im Laboratorium ist sowohl hinsichtlich des Sauerstoffverbrauches als hinsichtlich der Schwimmaktivität eine Fortsetzung des dem natürlichen Gezeitenwechsel angemesssenen Verhaltens.

  8. 8.

    Die ökologische Bedeutung dieser rhythmischen Verhaltensweisen unter den Lebensbedingungen an der Küste ist evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Abramowitz, R.K., and A.A. Abramowitz: Moulting, growth and survival after eyestalk removal in Uca pugilator. Biol. Bull. 78, 179–188 (1940).

    Google Scholar 

  • Aschoff, J.: Comparative Physiology: Diurnal rhythms. Ann. Rev. Physiol. 25, 581–600 (1963).

    Google Scholar 

  • Bennett, M.F., J. Shriner, and R.A. Brown: Persistent tidal cycles of spontaneous motor activity in the fiddler crab, Uca pugnax. Biol. Bull. 112, 267–275 (1957).

    Google Scholar 

  • Blume, J., E. Bünning u. D. Müller: Periodenanalyse von Aktivitätsrhythmen bei Carcinus maenas. Biol. Zbl. 81, 569–573 (1962).

    Google Scholar 

  • Bohn, G.: Sur les mouvements oscillatoires de Convoluta roscoffensis. C. R. Acad. Sci. (Paris) 137, 576–578 (1903).

    Google Scholar 

  • —: Periodicité vitale des animaux soumis aux oscillations du niveau des hautes mers. C. R. Acad. Sci. (Paris) 139, 610–611 (1904).

    Google Scholar 

  • Brown F.A., jr., M. Fingerman, M.I. Sandeen, and H.M. Webb: Persistent diurnal and tidal rhythms of color change in the fiddler crab, Uca pugnax. J. exp. Zool. 123, 29–60 (1953).

    Google Scholar 

  • Bünning, E.: Die physiologische Uhr, 2. Aufl. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • Cloudsley-Thompson, J.L.: Rhythmic activity in animal physiology and behaviour. New York and London: Academic Press 1961.

    Google Scholar 

  • Cole, L.C.: Biological clock in the unicorn. Science 125, 874–876 (1957).

    Google Scholar 

  • Enright, J.T.: The tidal rhythm of activity of a sand-beach amphipod. Z. vergl. Physiol. 46, 276–313 (1963).

    Google Scholar 

  • Fingerman, M.: Persistent daily and tidal rhythms of color change in Callinectes sapidus. Biol. Bull. 109, 255–264 (1955).

    Google Scholar 

  • —: Tidal rhythmicity in marine organisms. Cold Spr. Harb. Symp. quant. Biol. 25, 481–489 (1960).

    Google Scholar 

  • Gamble, F.W., and F. Keeble: The bionomics of Convoluta roscoffensis with special reference to its green cells. Proc. Roy. Soc. B 72, 93–98 (1903).

    Google Scholar 

  • —: The bionomics of Convoluta roscoffensis with special reference to its green cells. Quart. J. micr. Sci. 47, 363–431 (1904).

    Google Scholar 

  • Gompel, M.: Recherches sur la consommation d'oxygene de quelques animaux aquatiques littoraux. C. R. Acad. Sci. (Paris) 205, 816–818 (1937).

    Google Scholar 

  • Harker, J.E.: Diurnal rhythms in the animal kingdom. Biol. Rev. 33, 1–52 (1958).

    Google Scholar 

  • Hauenschild, C.: Lunar periodicity. Cold Spr. Harb. Symp. quant. Biol. 25, 491–497 (1960).

    Google Scholar 

  • Job, S.V.: The oxygen consumption of Salvelinus fontinalis. Ph. D. Thesis, Dep. of Zool., University Toronto 1957.

  • MacGinitie, G.E., and N. MacGinitie: Natural history of marine animals. New York: MacGraw-Hill Book Co. 1949.

    Google Scholar 

  • Naylor, E.: Tidal and diurnal rhythms of locomotory activity in Carcinus maenas (L.). J. exp. Biol. 35, 602–610 (1958).

    Google Scholar 

  • —: Locomotory rhythms in Carcinus maenas. J. exp. Biol. 37, 481–488 (1960).

    Google Scholar 

  • Pearse, A.S., H.J. Humm, and G.W. Wharton: Ecology of sand beaches at Beaufort, N. C. Ecol. Monogr. 12, 135–190 (1942).

    Google Scholar 

  • Roberts, J.L.: Thermal acclimation of metabolism in the crab, Pachygrapsus crassipes Randall. 1. The influence of body size, starvation and moulting. Physiol. Zool. 30, 232–242 (1957).

    Google Scholar 

  • Sandeen, M.I., G.C. Stephens, and F. A. Brown jr: Persistent daily and tidal rhythms of oxygen consumption in two species of marine snails. Physiol. Zool. 27, 350–356 (1954).

    Google Scholar 

  • Schlaifer, A.: Oxygen consumption of goldfish. Physiol. Zool. 12, 381–392 (1939).

    Google Scholar 

  • Schuett, F.: Studies in mass physiology. The effects of numbers on the oxygen consumption of fishes. Ecology 14, 106–122 (1933).

    Google Scholar 

  • Turner, H.J., and D.L. Belding: The tidal migration of Donax variabilis. Contribution No 886, Woodshole (Mass.) 1957.

  • Webb, H.M., and F.A. Brown jr.: Timing long cycle physiological rhythms. Physiol. Rev. 39, 127–161 (1959).

    Google Scholar 

  • Wieser, W.: Adaptations of two intertidal isopods. 1. Respiration and feeding in Naesa bidentata (Adams). J. mar. biol. Ass., U.K. 42, 665–682 (1962).

    Google Scholar 

  • Wolf, W. (Ed.): Rhythmic functions in the living system. Ann. N. Y. Acad. Sci. 98, 753–1326 (1962).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrashekaran, M.K. Persistent tidal and diurnal rhythms of locomotory activity and oxygen consumption in Emerita asiatica (M.-EDW.). Z. Vergl. Physiol. 50, 137–150 (1965). https://doi.org/10.1007/BF00302701

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00302701

Keywords

Navigation