Skip to main content

Genomics For Improvement Of Rosaceae Temperate Tree Fruit

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

Genomic studies of Rosaceous fruit trees have concentrated on two species: peach (Prunus persica), which has served as a model for other species of the same genus, such as the stone fruits (apricot, cherry and plum) and almond; and apple (Malus x domestica ), which itself is a model for other close species such as pear, quince and loquat. High density or saturated maps exist in both peach and apple, and sets of microsatellite markers spaced across the genome of both species are used for gene tagging and mapping in other populations. Efficient methods for mapping new markers and genes have been developed, such as “bin mapping” and the “genome scanning approach”. Tens of major genes and QTLs have been located on the maps of both species, and some of them are close to markers routinely used for selection in plant breeding. Comparative mapping has shown that all members of the Prunus genus share the same genome structure and that apple and pear genomes have a highly similar genetic organization. There are chromosomal rearrangements between the genomes of apple and Prunus, but extensive regions of synteny and collinearity are maintained. Several genes of apple and peach have been cloned using map-based techniques or are in the process of being cloned. A physical map is in an advanced stage of construction for peach and one has recently been started in apple. Large EST collections have been developed, particularly in apple and Prunus providing tens of thousands of new markers and gene sequences useful for functional analysis and map construction. Microarrays are proving to be valuable tools for identifying candidate genes for characters of interest. This information is stored in several databases with varying degrees of public access.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allan AC, Bolitho K, Espley RV, Grafton K, Hellens RP, Lin-Wang K, Karunairetnam S, Gleave AP, Laing W (2006) The MYB transcription factors of apple: a family of genes involved in controlling a wide range of plant responses. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Antofie A, Lateur M, Oger R, Patocchi A, Durel CE, Van de Weg WE (2006) Creation of a new versatile database for linking molecular and phenotypic information of apple (Malus × domestica Borkh): the HiDRAS ‘AppleBreed Database’. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005a) Synteny in the Rosaceae. Plant Breed Rev Vol. 27. In: Janick J (ed) Plant breeding reviews, vol. 27. Wiley, New York, pp 175–211

    Google Scholar 

  • Arús P, Howad W, Mnejja, M (2005b) Marker development and marker-assisted selection in temperate fruit trees. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress. In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, Italy, pp 309–325

    Google Scholar 

  • Arús P, Ballester J, Villarroel A, Howad W (2005c) Marcadores moleculares en identificación varietal y mejora del melocotonero y otras especies Prunus: aplicaciones y potenciales. Fruticultura Profesional 152:47–52

    Google Scholar 

  • Austin P, Norling C, Volz R, Bus V, Gardiner S (2006) Using controlled environments to accelerate flowering of Malus seedlings. 3rd international rosaceae genomics conference, 19–22 March 2006, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239

    PubMed  CAS  Google Scholar 

  • Ballester J, Socias i Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270

    CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    PubMed  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Nat Acad Sci USA 101:886–890

    PubMed  CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing gene mutation. J Hered 95:436–444

    PubMed  CAS  Google Scholar 

  • Bielenberg DG, Fan S, Reighard GL, Abbott AG (2006) Sequencing and annotation of the evergrowing locus from wild type and mutant genomes reveals several candidate genes for the control of terminal bud formation in response to dormancy inducing conditions, Acta Hort 738:559–565

    Google Scholar 

  • Bink MCAM, Uimari P, Sillanpää MJ, Janss LLG, Jansen RC (2002) Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet 104:751–762

    PubMed  CAS  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS, Wong KW (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    CAS  Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    PubMed  CAS  Google Scholar 

  • Borejsza-Wysocka EE, Malnoy M, Meng X, Bonasera JM, Nissinen RM, Kim JF, Beer SV, Aldwinckle HS (2004) Silencing of apple proteins that interact with DspE, a pathogenicity effector from Erwinia amylovora, as a strategy to increase resistance to fire blight. Acta Hort 1:469–473

    Google Scholar 

  • Borejsza-Wysocka E, Malnoy M, Meng X, Bonasera JM, Beer SV, Aldwinckle HS (2006) Increasing resistance to Erwinia amylovora in apple by silencing apple DIPM genes. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang H-S, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    PubMed  CAS  Google Scholar 

  • Bouvier L, Lespinasse Y, Schuster M (2000) Karyotype analysis of a haploid plant of apple (Malus domestica). Acta Hort 538:321–324

    Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260

    PubMed  CAS  Google Scholar 

  • Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E (2000) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Hort 538 2:541–547

    Google Scholar 

  • Bus V, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hort 595:43–47

    Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W, (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    PubMed  CAS  Google Scholar 

  • Calenge F, Durel C-E (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339

    Google Scholar 

  • Calenge F, Faure A, Drouet D, Parisi L, Brisset MN, Paulin JP, Van der Linden CG, Van de Weg WE, Schouten H, Lespinasse Y, Durel CE (2004a) Genomic organization of resistance factors against scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha) and fire blight (Erwinia amylovora) in apple. Biol Plant Microbe Interact 4:35–39

    CAS  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel C-E (2004b) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    CAS  Google Scholar 

  • Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset M-N, Paulin J-P, Durel C-E (2005a) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    CAS  Google Scholar 

  • Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denance C, Durel C-E (2005b) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    CAS  Google Scholar 

  • Celton J-M, Gardiner S, Rusholme R, Tustin S, Ambrose B (2006a) Pedigree analysis of apple rootstocks in relation to dwarfing. In: Mercer C (ed) Proceedings 13th Australasian plant breeding conference Christchurch, New Zealand, pp 645–650

    Google Scholar 

  • Celton J-M, Rusholme R, Tustin S, Ward S, Ambrose B, Ferguson I, Gardiner S (2006b) Genetic mapping of Dw1, a locus required for dwarfing of apple scions by ‘M.9’ rootstock. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Cevik V, King GJ (2002) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945

    PubMed  CAS  Google Scholar 

  • Chagné D, Carlisle C, Volz R, Allan A, Espley R, Hellens R, Crowhurst R, Gardiner S (2006a) Mapping genes linked to red flesh in apple. In: Mercer C (ed) Proceedings 13th Australasian plant breeding conference Christchurch, New Zealand, pp 847–851

    Google Scholar 

  • Chagné D, Carlisle C, Volz R, Allan A, Espley R, Hellens R, Crowhurst R, Gardiner S (2006b) SNP discovery in apple genes: application for red color. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41:208–214

    CAS  Google Scholar 

  • Cheng L, Zhou R, Reidel EJ, Sharkey TD, Dandekar AM (2005) Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta 220:767–776

    PubMed  CAS  Google Scholar 

  • Chevalier T, de Rigal D, Mbéguié-Mbéguié D, Gauillard F, Richard-Forget F, Fils-Licaon BR (1999) Molecular cloning and characterization of apricot fruit polyphenol oxydase. Plant Physiol 119:1261–1270

    PubMed  CAS  Google Scholar 

  • Chevreau E, Faize M, Dupuis F, Sourice S, Parisi L (2004) Combination of a transgene-mediated defense mechanism with a natural resistance gene increases apple scab resistance. Acta Hort 1:447–452

    Google Scholar 

  • Claverie M (2004) Stratégie de clonage positionnel du gène Ma conférant la résistence aux nématodes du genre Meloidogyne chez le prunier myrobolan. Ph.D. Thesis. Ecole Superieure Agronomique de Montpellier (France)

    Google Scholar 

  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) High-resolution mapping and chromosome landing at the root-know nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–27

    PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    PubMed  CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hort Sci 122:350–359

    CAS  Google Scholar 

  • Cook M, Gardiner S (2004) Development of a fully automated system to extract DNA from difficult plant tissues for genomics research. Plant & animal genome XII conference, San Diego, CA, http://www.intl-pag.org/12/abstracts/

    Google Scholar 

  • Cook MR, Xu P, Gardiner SE (2002) Development of an automated system for DNA extraction from leaf tissue. Projects 7:1–8

    Google Scholar 

  • Costa F, Stella S, van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190

    CAS  Google Scholar 

  • Crowhurst RN, Allan AC, Atkinson RG, Beuning LL, Davey M, Friel E, Gardiner SE, Gleave AP, Greenwood DR, Hellens RP, Janssen BJ, Kutty-Amma S, Laing WA, MacRae EA, Newcomb RD, Plummer KM, Schaffer R, Simpson RM, Snowden KC, Templeton MD, Walton EF, Rikkerink EHA (2005) The HortResearch apple EST database – a resource for apple genetics and functional genomics. Plant & animal genome XIII conference, San Diego, CA, http://www.intl-pag.org/13/abstracts/

    Google Scholar 

  • Crowhurst RN, Deng C, Davy M (2006) BioView – an enterprise bioinformatics system for automated analysis and annotation of non-genomic DNA sequence. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/ conferences/RG3_abstracts.pdf

    Google Scholar 

  • Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384

    CAS  Google Scholar 

  • Davey MW, Razavi F, Keulemans W (2006) Breeding functional apples; identification of QTL’s for mean vitamin C contents of fruit skin and flesh. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • de Souza VAB, Byrne DH (1998) Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: II. An analysis of several fruit traits. J Am Soc Hort Sci 123:604–611

    Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    PubMed  CAS  Google Scholar 

  • Defilippi BG, Dandekar AM, Kader AA (2004) Impact of suppression of ethylene action or biosynthesis on flavor metabolites in apple (Malus domestica Borkh) fruits. J Agric Food Chem 52:5694–5701

    PubMed  CAS  Google Scholar 

  • Defilippi BG, Dandekar AM, Kader AA (2005) Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J Agric Food Chem 53:3133–3141

    PubMed  CAS  Google Scholar 

  • Degenhardt J, Al-Masri AN, Kürkcüoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    PubMed  CAS  Google Scholar 

  • Diatchenko L, Lukyanov S, Lau Y-FC, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303:349–380

    PubMed  CAS  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batch). Theor Appl Genet 98:18–31

    CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004a) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D (2004b) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    CAS  Google Scholar 

  • Dirlewanger E, Kleinhentz M, Laigret F, Gómez-Aparisi J, Rubio-Cabetas MJ, Claverie M, Bosselut N, Voisin R, Esmenjaud D, Xyloyannis C, Dichio B, Poëssel JL, Di Vito M, Arús P, Howad W (2005) Breeding for a new generation of Prunus rootstocks based on marker-assisted selection: A European initiative. Acta Hort 663:829–833

    Google Scholar 

  • Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arús P, Delseny M, Barnes S (2003) Plant genome archeology: evidence for conserved ancestral chromosome segmentsin dicotyledonous plant species. Plant Biotech J 1:91–99

    CAS  Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Chiondini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    CAS  Google Scholar 

  • Dreesen R, Vanholme B, Keulemans J (2006) Transcriptomics of ripening in apple as a tool to improve apple quality traits. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Dunemann F, Urbanietz A, Gardiner S, Bassett H, Legg W, Rusholme R, Bus V, Ranatunga C (2005) Marker assisted selection for Pl-1 powdery mildew resistance in apple – old markers for a new resistance gene? Acta Hort 663

    Google Scholar 

  • Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234

    PubMed  CAS  Google Scholar 

  • Durham RE, Korban SS (1994) Evidence of gene introgression in apple using RAPD markers. Euphytica 79:109–114

    CAS  Google Scholar 

  • Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245

    PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2006) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J (in press)

    Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Dumas LS, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach (Prunus persica (L.) Batsch). Theor Appl Genet 105:145–159

    PubMed  CAS  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484

    CAS  Google Scholar 

  • Foulongne M (2002) Introduction d’une résistence polygénique à l’oïdium chez le pêcher Prunus persica à partir d’une espèce sauvage Prunus davidiana. PhD Thesis. Université de la Mediterranée-Faculté de Sciences de Marseille-Luminy

    Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    CAS  Google Scholar 

  • Frey JE, Frey B, Sauer C, Kellerhals M (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed 123:554–557

    CAS  Google Scholar 

  • Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hort 622:141–151

    CAS  Google Scholar 

  • Gardiner SE, Bus V, Volz, R, Bassett, H (2006a) Marker assisted selection in apple breeding internationally. In: Mercer C (ed) Proceedings 13th Australasian Plant Breeding Conference Christchurch, New Zealand, pp. 681–686

    Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2006b) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants, Vol. 4, Fruits and Nuts, Springer, Berlin pp.1–62

    Google Scholar 

  • Gasic K, Gonzales DO, Malnoy M, Thimmapuram J, Vodkin LO, Liu L, Aldwinckle HS, Carroll N, Orvis K, Goldsbrough P, Clifton S, Clifton L, Dante M, Hou S, Courtney W, Korban SS (2006) Analysis and functional annotation of an expressed sequence tag (EST) collection of apple (Malus × domestica). 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Iñigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach (Prunus persica (L.) Batsch). Theor Appl Genet 105:1151–1158

    PubMed  CAS  Google Scholar 

  • Georgi LL, Wang Y, Reighard GL, Mao L, Wing RA, Abbott AG (2003) Comparison of peach and Arabidopsis genomic sequences: fragmentary conservation of gene neighborhoods. Genome 46:268–276

    PubMed  CAS  Google Scholar 

  • Gianfranceschi L (2006) HiDRAS: an innovative multidisciplinary EU-funded research project to breed high-quality disease resistant apples. Plant & animal genomes XIV conference, 14–18 January, San Diego, CA, http://www.intl-pag.org/14/abstracts/PAG14_W132.html

    Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    PubMed  CAS  Google Scholar 

  • Gilissen LJWJ, Bolhaar STHP, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, Zuidmeer L, Van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg E, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    PubMed  CAS  Google Scholar 

  • Gong W, Shen Y-P, Ma L-G, Pan Y, Du Y-L, Wang D-H, Yang J-Y, Hu L-D, Liu X-F, Dong C-X, Ma L, Chen Y-H, Yang X-Y, Gao Y, Zhu D, Tan X, Mu J-Y, Zhang D-B, Liu Y-L, Dinesh-Kumar SP, Li Y, Wang X-P, Gu H-Y, Qu L-J, Bai S-N, Lu Y-T, Li J-Y, Zhao J-D, Zuo J, Huang H, Deng XW, Zhu Y-X (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes1(w). Plant Physiol 135:773–782

    PubMed  CAS  Google Scholar 

  • Goulão L, Oliveira CM (2006) Molecular identification of novel differentially expressed mRNAs up-regulated during ripening of apples. Plant Sci 72:306–318

    Google Scholar 

  • Granell A, Crisosto CH, Martí-Ibáñez C, Gradziel TM, Forment J, Peace C (2006) “CHILLPEACH” a functional database to understand peach chilling injury. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Grimplet J, Romieu C, Audergon J-M, Marty I, Albagnac G, Lambert P, Bouchet J-P, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13,006 expressed sequence tags. Physiol Plant 125:281–292

    Google Scholar 

  • Hadidi A, Czosnek H, Barba M (2004) DNA microarrays and their potential applications for the detection of plant viruses, viroids, and phytoplasmas. J Plant Pathol 86:97–104

    CAS  Google Scholar 

  • Haji T, Yaegaki H, Yamaguchi M (2005) Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Scientia Hort 105:241–248

    Google Scholar 

  • Han Y, Gasic K, Marron B, Beever JE, Korban SS (2006a) Development of a genome-wide physical map of apple genome. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Han Y, Gasic K, Xu M, Korban SS (2006b) Characterization of an SBE1 gene encoding starch branching enzyme I in apple. Plant & animal genomes XIV conference, 14–18 January. http://www.intl-pag.org/14/abstracts/PAG14_P498.html

    Google Scholar 

  • Hartweck LM, Olszewski NE (2006) Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signalling. Plant Cell 18:278–282

    PubMed  CAS  Google Scholar 

  • Hatsuyama Y, Igarashi M, Fukasawa-Akada T, Hashimoto A, Ohta T, Sato Y, Honda S, Kishimoto N, Kikuchi S, Suzuki M (2003) Monitoring effects of a host specific toxin on gene expression in apple leaves by DNA microarray. Plant & animal genomes XI conference, 11–15 January, San Diego, CA, http://www.intl-pag.org/11/abstracts/P7a_P776_XI.html

    Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    PubMed  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Am Soc Hort Sci 128:515–520

    CAS  Google Scholar 

  • Horn R, Lecouls A-C, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    PubMed  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    PubMed  CAS  Google Scholar 

  • Itai A, Kotaki T, Tanabe K, Tamura F, Kawaguchi D, Fukuda M (2003) Rapid identification of 1-aminocyclopropane-1-carboxylate (ACC) synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. Theor Appl Genet 106:1266–1272

    PubMed  CAS  Google Scholar 

  • Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999) Linkage desequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060

    CAS  Google Scholar 

  • Janssen B, Schaffer R, Thodey K, Bishop R, Bajaj S, Snowden K, Crowhurst R, Bowen J, Ledger S, Davy M, Dayatilake D, Ward S, McCartney S, Wunsche J (2006) Microarray analysis of fruit development in apple. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176

    Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 53:493–511

    PubMed  CAS  Google Scholar 

  • Jensen PJ, Altman N, Crassweller R, Makalowska I, Maximova S, Praul C, Travis JW, McNellis TW (2006) Apple tree functional genomics: getting to the rootstock of it. Plant & animal genomes XIV conference, 14–18 January, San Diego, CA, http://www.intl-pag.org/14/abstracts/PAG14_W135.html

    Google Scholar 

  • Joobeur T (1998) Construcción de un mapa de marcadores moleculares y análisis genético de caracteres agronómicos en Prunus. PhD thesis, Universtat de Lleida

    Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97:1034–1041

    CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbot A, Tomking J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BioMed Central:1–8

    Google Scholar 

  • Jung S, Abbott AG, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genomics 5:136–143

    PubMed  CAS  Google Scholar 

  • Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arús P, Abbott AG (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:81

    PubMed  Google Scholar 

  • Kellerhals M, Gianfranceschi L, Seglias N, Gessler C (2000) Marker-assisted selection in apple breeding. Acta Hort 521:255–265

    CAS  Google Scholar 

  • Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh) based on AFLP and microsatellite markers. Mol Breed 15:205–219

    CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    PubMed  CAS  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill). Theor Appl Genet 100:1074–1084

    Google Scholar 

  • King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill). Theor Appl Genet 102:1227–1235

    CAS  Google Scholar 

  • Kirst M, Basten CJ, Myburg AA, Zeng Z-B, Sederoff RR (2005) Genetic architecture of transcript-level variation in differentiating xylem of a Eucalyptus hybrid. Genetics 169:2295–2303

    PubMed  CAS  Google Scholar 

  • Ko K, Norelli JL, Reynoird J-P, Aldwinckle HS, Brown SK (2002) T4 lyozyme and attacin genes enhance resistance of transgenic ‘Galaxy’ apple against Erwinia amylovora. J Am Soc Hort Sci 127:515–519

    CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juveline phase in apple. J Am Soc Hort Sci 131:74–81

    CAS  Google Scholar 

  • Krens FA, Pelgrom KTB, Schaart JG, den Nijs APM, Rouwendal GJA (2004) Clean vector technology for marker-free transgenic fruit crops. Acta Hort 663:431–435

    CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AVS, Levraud V, Garay L, Gall OL, Damsteegt V, Reighard GL, Abbott, AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    PubMed  CAS  Google Scholar 

  • Lambert P, Faurobert M, Pelpoir E, Moreau K, Poëssel JL, Audergon JM (2004) Comparative mapping of Prunus armeniaca, P. cerasifera × P. armeniaca and Prunus reference map. Acta Hort 663:91–94

    CAS  Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6:516

    Google Scholar 

  • Lebedev VG, Dolgov SV, Skryabin KG (2002) Transgenic pear clonal rootstocks resistant to herbicide “Basta”. Acta Hort 596:193–197

    CAS  Google Scholar 

  • Lee S-Y, Lee D-H (2005) Expression of MbR4, a TIR-NBS type of apple R gene, confers resistance to bacterial spot disease in Arabidopsis. J Plant Biol 48:220–228

    CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    PubMed  CAS  Google Scholar 

  • Lester DR, Sherman WB, Atwell BJ (1996) Endopolygalacturonase and the melting flesh (M) locus in peach. J Am Soc Hort Sci 121:231–235

    CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh). Mol Breed 10:217–241

    CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh). Plant Mol Biol 52:511–526

    CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus × domestica Borkh) genome. Theor Appl Genet 106:1497–1508

    CAS  Google Scholar 

  • Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003c) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Phytopathology 93:493–501

    Google Scholar 

  • Lin S (2005) Transcript profiling as a method to study fruit maturation, tree-ripening, and the role of “Tree Factor in ‘Gala’ and ‘Fuji’ apples” Faculty of the Graduate School University of Maryland, College Park, PhD Thesis

    Google Scholar 

  • Liu Q, Ingersoll J, Owens L, Salih S, Meng R, Hammerschlag F (2001) Response of transgenic Royal Gala apple (Malus × domestica Borkh.) shoots carrying a modified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Rep 20:306–312

    Google Scholar 

  • López M, Mnejja M, Romero MA, Vargas FJ, Arús P, Batlle I (2005) Use of Sf-specific PCR for early selection of self-compatible seedlings in almond breeding. Options Méditerranéenes 63:269–274

    Google Scholar 

  • Luby JJ, Shaw DV (2001) Does marker-assisted selecton make dollars and sense in a fruit breeding program? Hort Sci 36:872–879

    Google Scholar 

  • MacDiarmid R (2005) RNA silencing in productive virus infections. Ann Rev of Phytopath 43:523–544

    CAS  Google Scholar 

  • MacHardy WE (1996) Apple scab: biology, epidemiology, and management. APS Press, St Paul MN

    Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    CAS  Google Scholar 

  • Malnoy MA, Aldwinckle HS (2006) Development of fire blight resistance by recombinant DNA technology. In: Janick J (ed) Plant Breeding Reviews 29, Wiley, New York, USA, pp. 315–358

    Google Scholar 

  • Malnoy M, Venisse JS, Brisset MN, Chevreau E (2003) Expression of bovin lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear in through iron chelation. Mol Breed 12:231–244

    CAS  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Jin Q-L, He SY, Aldwinckle HS (2004) Over-expression of the apple gene MpNPR1 causes increased disease resistance in Malus × domestica. Acta Hort 663:463–467

    CAS  Google Scholar 

  • Malnoy M, Boresjza-Wysocka E, Aldwinckle HS, Jin Q-L, He SY (2006a) Transgenic apple lines over-expressing the apple gene MpNPR1 have increased resistance to fire blight. Acta Hort 704:521–526

    Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka EE, Korban SS, Aldwinckle HS (2006b) The role of Vfa RGA’s at the Vf locus in resistance to Venturia inaequalis. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Malnoy M, Reynoird JP, Borejsza-Wysocka EE, Aldwinckle HS (2006c) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus × domestica). Transgenic Res 15:83–93

    CAS  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Abbott P, Lewis S, Norelli JL, Flaishman M, Gidoni D, Aldwinckle HS (2006d) Genetic transformation of apple without use of a selectable marker. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/ gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Manganaris AG, Alston FH, Weeden NF, Aldwinckle HS, Gustafson HL, Brown SK (1994) Isozyme locus Pgm-1 is tightly linked to a gene (Vf) for scab resistance in apple. J Am Soc Hort Sci 119:1286–1288

    CAS  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12:671–681

    PubMed  CAS  Google Scholar 

  • Mattison H, Nybom H (2005) Application of DNA markers for detection of scab resistant apple cultivars and selections. Int J Hort Sci 11:59–61

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    PubMed  CAS  Google Scholar 

  • Meisel L, Vizoso P, Latorre M, Saba J, Loira N, Tittarelli A, Martírnez V, Vargas C, Maldonado J, Caroca R, Bugueño M, Segovia S, Morales A, Silva H (2006) Bioinformatic advances of the Chilean nectarine functional genomics consortium. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    PubMed  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Bhawana N, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    PubMed  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    PubMed  CAS  Google Scholar 

  • Norelli JL, Aldwinckle HS, Destéfano-Beltrán L, Jaynes JM (1994) Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128

    CAS  Google Scholar 

  • Norelli JL, Korban SS, Volk GM, Zeng Z-B, Aldwinckle HS, Bassett CL, Beever J, Farrell RE, Gasic K Jr, Han Y, Kertbundit S, Marron B, Richards CM (2006) USDA-CSREES-NRI projects developing genomic resources for the Rosaceae (Malus). Plant & animal genome XIV conference. http://www.intl-pag.org/14/abstracts/PAG14_W133.html

    Google Scholar 

  • Orellana A, Baeza R, Cambiazo V, Campos R, Defilippi B, González M, Meisel L, Retamales J, Silva H (2006) The Chilean peach functional genomics initiative, a progress report. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/ gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags1. Plant Physiol 141:811–824

    PubMed  CAS  Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf Region. Theor Appl Genet 99:1012–1017

    CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262:884–891

    CAS  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theoretical and Applied Genetics 109:1087–1092

    PubMed  CAS  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated to the apple scab resistance gene Vm. Genome 48:630–636

    PubMed  CAS  Google Scholar 

  • Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for Freestone and Melting flesh in peach. Mol Breed 161:21–31

    Google Scholar 

  • Peace CP, Ogundiwin EA, Gradziel TM, Potter D, Weeks C, Badenes ML, Iezzoni, AF Bliss, FA, Crisosto, CH (2006a) Fruit softening in Prunus: progress and prospects of the candidate gene approach. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Peace CP, Abbott AG, Dai W, Iezzoni AF, Arus P, Baird WV, Callahan AM, Crisosto CH, Gradziel TM, Loescher W, Main D, Reighard G, Sosinski B, Tomkins J, van der Knaap E, Walla JA, Wang D (2006b) Prunus projects of the USDA CSREES national research initiative: synergies and progress. Plant & animal genome XIV conference, 14–18 January, San Diego, CA

    Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect. Transgenic Res 14:15–26

    PubMed  CAS  Google Scholar 

  • Pierantoni L, Cho K-H, Shin I-S, Chiodini R, Tartarini S, Dondini L, Kang S-J, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

    PubMed  CAS  Google Scholar 

  • Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam A, Sodhi YS, Pental D (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614

    PubMed  CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    PubMed  CAS  Google Scholar 

  • Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysisng the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092

    PubMed  CAS  Google Scholar 

  • Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111

    PubMed  CAS  Google Scholar 

  • Rikkerink E, Hilario E, Rusholme R, Gardiner S, Bus V, Gleave A, Crowhurst R (2003) Mining the HortResearch apple EST database – in silico tissue expression analysis of resistance gene candidates and resistance gene classes. http://www.intl-pag.org/11/abstracts/P01_P14_XI.html

    Google Scholar 

  • Rousseau M, Saint Oyant LH, Foucher F, Barrot L, Lalanne D, Sargent D, Simpson D, Laigret F, Denoyes-Rothan B (2006) 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Salesses G, Mouras A (1977) Tentative d’utilisation des protoplastes pour l‘étude des chromosomes chez les Prunus. Ann Amelior Plantes 27:363–368

    Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    PubMed  CAS  Google Scholar 

  • Schaffer R, Friel E, Souleyre E, Janssen B, Thodey K, Bishop R, Davy M, Yao J-L, Cohen D, Newcomb R (2006) Microarray analysis of ripening in apple (cultivar Royal Gala). 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Schneider B, Berwarth C, Jelkmann W (2006) Engineering improved resistance against the fire blight pathogen in apple cultivars ‘Elstar’ and ‘Royal Gala’ by expression of human lactoferrin. Acta Hort 704:541–544

    CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24:753

    Google Scholar 

  • Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (eds) Fruit breeding, Wiley, New York, pp. 325–440

    Google Scholar 

  • Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hort Sci 110:547–552

    Google Scholar 

  • Silfverberg-Dilworth E, Patocchi A, Belfanti E, Tartarini S, Sansavini S, Gessler C (2005) HcrVf2 introduced into Gala confers race-specific scab resistance. Plant and animal genome XIII conference, January, San Diego, CA, http://www.intl-pag.org/13/abstracts/

    Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Google Scholar 

  • Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) DA Webb): the candidate gene approach. Theor Appl Genet 110:959–968

    PubMed  CAS  Google Scholar 

  • Soglio V, Schouten H, Costa F, Gianfranceschi L (2006) Identification of genes with modulated expression during fruit development in Malus × domestica Borkh. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Sonneveld T, Robbins TP, Tobutt KR (2006) Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed 125:305–307

    CAS  Google Scholar 

  • Soriano JM, Vilanova S, Romero C, Llácer G, Badenes ML (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L). Theor Appl Genet 110:980–989

    PubMed  CAS  Google Scholar 

  • Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132–3144

    PubMed  CAS  Google Scholar 

  • Tatsuki M, Haji T, Yamaguchi M (2006) The involvement of 1-aminocyclopropane-1-carboxylic acid syntase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot 57:1281–1289

    PubMed  CAS  Google Scholar 

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752

    PubMed  CAS  Google Scholar 

  • Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray microPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric toclimacteric phase in peach fruit. Plant Sci 170:606–613

    CAS  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-Box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    PubMed  CAS  Google Scholar 

  • van de Weg WE, Voorrips RE, Finkers R, Kodde LP, Jansen J, Bink MCAM (2004) Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining. Acta Hort 663:45–50

    Google Scholar 

  • van Nocker S, Sun L, Bukovac MJ, Fernandez-Lopez H (2006) Development of a genetic and molecular toolbox for the study of fruit abscission. Plant & animal genome conference, 14–18 January, San Diego, CA

    Google Scholar 

  • van Wordragen M, Balk P, Hall R, Nijenhuis M, van den Broeck H, Vorst O, Poelman A (2003) Applied genomics – an innovative tool to improve quality in chains: predicting mealiness in apples – a case study. Acta Hort 604:387–394

    Google Scholar 

  • Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the [Prunus persica (L.) Batsch] × P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013–1021

    PubMed  CAS  Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SRR and AFLP markers, mapping plum pox virus resistance and self-incompatibility. Theor Appl Genet 107:239–247

    PubMed  CAS  Google Scholar 

  • Vilanova S, Romero C, Llacer G, Badenes ML, Burgos L (2005) Identification of self-(in)compatibility alleles in apricot by PCR and sequence analysis. J Am Soc Hort Sci 130:893–898

    CAS  Google Scholar 

  • Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190

    CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001a) Apple contrains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H-B, Gessler C, Sansavini S (2001b) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    CAS  Google Scholar 

  • Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervela J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort 465:79–87

    CAS  Google Scholar 

  • Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420

    PubMed  CAS  Google Scholar 

  • Wang Q, Zhang K, Qu X, Jia J, Shi J, Jin D, Wang B (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theor Appl Genet 103:1174–1179

    CAS  Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach (Prunus persica (L.) Batsch). J Hered 93:352–358

    PubMed  CAS  Google Scholar 

  • Wang C, Tian Y, Zhao J (2005) General application analysis of SSRs derived from apple (Malus pumila) on other species in Rosaceae. Acta Hort Sin 32:500–502

    CAS  Google Scholar 

  • Wattebled F, Chevreau E, Durel CE, Laurens F (2006) Improving the knowledge of apple quality by functional genomics approaches. Perspectives at INRA Angers. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Welander M, Zhu LH, Li XY (2004) Transformation of dwarfing apple and pear rootstocks with the rolB gene and its influence on rooting and growth. Acta Hort 1:437–442

    Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    PubMed  CAS  Google Scholar 

  • West MAL, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, Clair DA St, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795

    PubMed  CAS  Google Scholar 

  • Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006

    PubMed  CAS  Google Scholar 

  • Xu M, Song J, Cheng Z, Jiang J, Korban SS (2001) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113

    PubMed  CAS  Google Scholar 

  • Xu M, Korban SS, Song J, Jiang J (2002) Constructing a bacterial artificial chromosome library of the apple cultivar goldrush. Acta Hort 595:103–112

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hort 663:51–56

    CAS  Google Scholar 

  • Yamamoto Y, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Hort Sci 74:204–213

    CAS  Google Scholar 

  • Yamamoto T, Terakami S, Nishitani C, Kimura T, Sawamura Y, Hirabayashi T, Hayashi T (2006) Genome mapping in pear. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Zhebentyayeva T, Georgi L, Forrest S, Swire-Clark G, Mook J, Horn R, Jung S, Main D, Baird WV, Reighard G, Tomkins J, Abbott AG (2006) The peach physical/genetic map database: a tool for Rosaceae genomics. 3rd international rosaceae genomics conference, 19–22 March, Napier. http://www.mainlab.clemson.edu/gdr/community/conferences/RG3_abstracts.pdf

    Google Scholar 

  • Zhu L, Ahlman A, Li X, Welander M (2001a) Integration of the rolA gene into the genome of the vigorous apple rootstock A2 reduced plant height and shortened internodes. J Hort Sci Biotechnol 76:758–763

    CAS  Google Scholar 

  • Zhu L-H, Holefors A, Ahlman A, Xue Z-T, Welander M (2001b) Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439

    CAS  Google Scholar 

  • Zhu L-H, Li X-Y, Ahlman A, Welander M (2003) The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci 165:829–835

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Arús, P., Gardiner, S. (2007). Genomics For Improvement Of Rosaceae Temperate Tree Fruit. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_14

Download citation

Publish with us

Policies and ethics