Skip to main content

The State of the Art: Molecular Genomics and Marker-Assisted Breeding

  • Chapter
  • First Online:
Genomics of Tree Crops

Abstract

Focus on tree biotechnology reflects the challenges posed by the genetic attributes of trees. The genetic attributes of trees stand in stark contrast to those of domesticated annual crops. Trees typically have long generation times and are wind pollinated with out-crossing mating systems. Traditional tree breeding is a lengthy process that cannot efficiently capture nonadditive genetic variation, primarily because inbred lines would suffer from inbreeding depression. Clonal propagation of elite genotypes allows for the capture of both additive and nonadditive genetic variation, and the addition of transgenes can confer new or enhanced traits. The molecular analysis of plants often focused on the single gene level. But the recent technological advances have changed this paradigm. The way the genes and genetic information are organized within the genome and the methods of collecting and analyzing this information and the determination of their biological functionality are referred to as genomics. Genomic approaches are permeating every aspect of plant biology, and since they rely on DNA-coded information, they expand molecular analyses from a single to a multispecies level. Plant genomics is reversing the previous paradigm of identifying genes behind biological functions and instead focuses on finding biological functions behind genes. It also reduces the gap between phenotype and genotype. This introductory chapter overviews two main sections: first, the current understanding of genomes, their genetic structure at the inter- and intra-species level, and how whole genomes are sequenced; and second, on finding the biological and functional significance of DNA sequence. It is also worthwhile to note that these technologies, though extensively used in agricultural species, are only used in forest tree species research. Except for some tropical (avocado, mango, and papaya) and temperate (apple, Prunus, and Pyurus) fruit species, these ­techniques are not extensively used in other tree crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DA, Suir E, van Maris AJ, Pronk JT (2008) Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 18:5759–5768

    Article  Google Scholar 

  • Adams J et al (2000) The case for genetic engineering of native and landscape trees against ­introduced pests and diseases. Conserv Biol 16:874–879

    Article  Google Scholar 

  • Aharoni A, Vorst O (2001) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118 [Links]

    Article  Google Scholar 

  • Arimura G, Tashiro K, Kuhara S, Nishikova T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310 [Links]

    Article  PubMed  CAS  Google Scholar 

  • Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9(4):212–226

    Article  PubMed  CAS  Google Scholar 

  • Barnes S (2002) Comparing Arabidopsis to other flowering plants. Curr Opin Plant Biol 5:128–133

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Mayer M, Mayer K, White O, Eisin JA, Preuss D, Bureau T, Salzberg S, Mewes HW (2001) Sequence and analysis of the Arabidopsis genome. Curr Opin Plant Biol 4:105–110

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo SJ, Mccurdy S, Foy M, Ewan M, Roth R, George S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, Dubridge RB, Kirchner J, Fearon K, Mao J, Corcoran NK (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  • Brown GR et al (2004) Nucleotide variation and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Bruce W, Folkerts O, Garnaat C, Crasta O, Roth B, Bowen B (2000) Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell 12:65–79

    PubMed  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Campos de Quiros H, Magrath R, McCallum D, Kroymann J, Schnabelrauch D, Mitchell-Olds T, Mithen R (2000) a-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor Appl Genet 101:429–437

    Article  PubMed  CAS  Google Scholar 

  • Desprez T, Amselem J, Caboche M, Hofte H (1998) Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant J 14:643–652

    Article  PubMed  CAS  Google Scholar 

  • DiFazio SP, Slavov GT, Burczyk J, Leonardi S, Strauss SH (2004) Gene flow from tree plantations and implications for transgenic risk assessment. In: Forest Biotechnology for the 21st Century (eds. Walter C & Carson M), Research Signpost, Kerala, India. pp. 405–422

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, Sanmiguel P, Busso C, Yan L, Shiloff B, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice Bacterial Artificial Chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Dunwell JM, Moya-Leon MA, Herrera R (2001) Transcriptome analysis and crop improvement: a review. Biol Res 34(3–4):153–164

    PubMed  CAS  Google Scholar 

  • Enrique R, Siciliano F, Favaro MA, Gerhardt N, Roeschlin R, Rigano L, Sendin L, Castagnaro A, Vojnov A, Marano MR (2011) Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. Citri. Plant Biotechnol J 9:394–407

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Gonzalez-Martinez SC et al (2006) DNA sequence variation and selection of tag SNPs at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abaijan C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Gordon D, Desmarais C, Green P (2001) Automated finishing with Autofinish. Genome Res 11:614–625

    Article  PubMed  CAS  Google Scholar 

  • Greco R, Ouwerkerk PBF, Sallaud C, Kohli A, Colombo L, Puigdomenech P, Guiderdoni E, Christou P, Hoge JHC, Pereira A (2001) Transposon insertional mutagenesis in rice. Plant Physiol 125:1175–1177

    Article  PubMed  CAS  Google Scholar 

  • Herrera S (2005) Struggling to see the forest though the trees. Nat Biotechnol 2:165–167

    Article  Google Scholar 

  • Hurry V, Strand A, Furbank R, Stitt M (2000) The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J 24:383–396

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953

    Article  PubMed  CAS  Google Scholar 

  • Jermstad KD et al (2003) Mapping of quantitative trait loci controlling adaptive traits in Douglas fir. III. Quantitative trait lociby-environment interactions. Genetics 165:1489–1506

    PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF (2009) Biochemical and proteomic analysis of ‘Dixiland’ peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315–4333

    Article  PubMed  CAS  Google Scholar 

  • Layne DR, Bassi D (2008) The peach: botany, production and uses (CABI). CABI 30 Nov 2008, 848 pp. ISBN: 1845933869 PDF 27.1 MB

    Google Scholar 

  • Lee JM, Grant D, Vallejos CE, Shoemaker RC (2001) Genome organization in dicots II Arabidopsis as a ëbridging speciesí to resolve genome evolution events among legumes. Theor Appl Genet 103:765–773

    Article  CAS  Google Scholar 

  • Lee JM, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Whittier R (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Maes T, De Keukeleire P, Gerats T (1999) Plant tagnology. Trends Plant Sci 4:90–96

    Article  PubMed  Google Scholar 

  • Marra M, Kucaba T, Dietrich N, Green E, Brownstein WRK, Mcdonald K, Hillier L, Mcpherson J, Waterston RH (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7:1072–1084

    PubMed  CAS  Google Scholar 

  • Mayer K, Murphy G, Tarchini R, Wambutt R, Volckaert G, Pohl T, Düsterhöft A, Stiekema W, Entian K-D, Terryn N, Lemcke K, Haase D, Hall C, van Dodeweerd A-M, Tingey S, Mewes H-W, Bevan MW, Bancroft I (2001) Conservation of microstructure between a sequenced region of the genome of rice, multiple segments of the genome of Arabidopsis thaliana. Genome Res 11:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Meyers B, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  PubMed  CAS  Google Scholar 

  • Multani D, Meeley RB, Paterson AH, Gray J, Briggs SP, Johal GS (1998) Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci USA 95:1686–1691

    Article  PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  PubMed  CAS  Google Scholar 

  • Noordewier MO, Warren PV (2001) Gene expression microarrays, the integration of biological knowledge. Trends Biotechnol 19:412–415

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Gerber A, Hart D (1988) A genetic application of an inverse polymerase chain reaction. Genetics 120:621–623

    PubMed  CAS  Google Scholar 

  • Pereira A (2000) A transgenic perspective on plant functional genomics. Transgenic Res 9:245–260

    Article  PubMed  CAS  Google Scholar 

  • Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135:1540–1551

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  PubMed  CAS  Google Scholar 

  • Rafalski AJ (2002) Plant genomics: present state and a perspective on future developments. Brief Fundam Genomics Proteomics 1:1–15

    Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown P (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought, cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    PubMed  CAS  Google Scholar 

  • Shimamoto K, Kyozuka J (2002) Rice as a model for comparative genomics of plants. Annu Rev Plant Biol 53:399–419

    Article  PubMed  CAS  Google Scholar 

  • Song C, Cao X, Nicholas KK, Wang C, Li X, Wang X, Fang J (2010) Extraction of low molecular weight RNA from Citrus trifolita tissues for microRNA Northern blotting and reverse transcriptase polymerase chain reaction (RTPCR). Afr J Biotechnol 9:8726–8730

    CAS  Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    PubMed  CAS  Google Scholar 

  • Tarchini R, Biddle P, Winel R, Tingey S, Rafalski A (2000) The complete sequence of 340 kb of DNA around the rice Adh1-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov A, Sanmiguel P, Nakajimanina Y, Gorenstein M, Bennetzen JL, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    Article  PubMed  CAS  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JD (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852

    PubMed  CAS  Google Scholar 

  • Uberbacher EC, Mural RJ (1991) Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci USA 88:11261–11265

    Article  PubMed  CAS  Google Scholar 

  • van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees. Canadian Journal of Forest Res 34(6):1163–1180

    PubMed  CAS  Google Scholar 

  • Velculescu V, Zhang L, Vogelstein B, Kinzler K (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Guegler K, Labrie Samuel T, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Priyadarshan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Priyadarshan, P.M., Schnell, R.J. (2012). The State of the Art: Molecular Genomics and Marker-Assisted Breeding. In: Schnell, R., Priyadarshan, P. (eds) Genomics of Tree Crops. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0920-5_1

Download citation

Publish with us

Policies and ethics