Skip to main content

Application Of Genomics To Forage CROP Breeding For Quality Traits

  • Chapter
Genomics-Assisted Crop Improvement
  • 2075 Accesses

Abstract

Forage quality depends on the digestibility of fodder, and can be directly measured by the intake and metabolic conversion in animal trials. However, animal trials are time-consuming, laborious, and thus expensive. It is not possible to study thousands of plant genotypes, as required in breeding programs. Therefore, several indirect methods including near-infrared reflectance spectroscopy (NIRS) have been established to overcome this limitation. However, the ideal indirect system for the prediction of forage performance would be based on gene-derived “functional” DNA markers, allowing early selection ultimately without need of field trials, and being environment independent. In addition, once identified relevant genes controlling forage quality are targets for transgenic approaches. Substantial progress has recently been achieved in the development and application of genomic tools both in model species and major forage crops such as ryegrass and alfalfa. Key genes involved in developmental and biochemical pathways affecting forage quality such as cell-wall, lignin, fructan, and tannin biosynthesis have been isolated and characterized. For some of these genes, allelic variation has been studied in detail and sequence motifs with likely effect on forage quality have been identified by association studies. Moreover, transgenic approaches substantiated the effect of several of these genes on forage quality. Perspectives and limitations of these findings for forage crop breeding are discussed given expected further progress in forage crop genomics, but also the complexity of the trait complex forage quality, since typically species mixtures of heterogeneous and heterozygous genotypes are grown in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Schrag T, Zein I, Melchinger AE, Lübberstedt T (2005) Functional marker validation of polymorphisms in the maize dwarf8 gene affecting flowering time in European elite materials. Theor Appl Genet 111:206–217

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Jensen LB, Asp T, Lübberstedt T (2006) Vernalization response in perennial ryegrass (Lolium perenne L) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1. Plant Mol Biol 60:481–494

    Article  PubMed  CAS  Google Scholar 

  • Armstead IP, Turner LB, Farrell M, Skot L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    Article  PubMed  CAS  Google Scholar 

  • Asp T, Didion T, Nielsen KK, Holm PB, Lübberstedt T (2006) Integrated resources for functional genomics in perennial ryegrass (Lolium perenne): EST collection, mapping populations, BAC library, microarray-based expression profiling, and transformation systems. Posterabstract 8th International Congress of Plant Molecular Biology, Adelaide, August 20–25 2006

    Google Scholar 

  • Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta 221:28–38

    Article  PubMed  CAS  Google Scholar 

  • Barrière Y, Argillier O (1993) Brown-midrib genes of maize: a review. Agronomie 13:865–876

    Article  Google Scholar 

  • Barrière Y, Guillet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Animal Res 52:193–228

    Google Scholar 

  • Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Comptes Rendus Biol 327:847–860

    Article  CAS  Google Scholar 

  • Becker H (1993) Pflanzenzüchtung. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma press, Woodburry, MN

    Google Scholar 

  • Bevan M, Mayer K, White O, Eisen JA, Preuss D, Bureau T, Salzberg T, Mewes H-W (2001) Sequence and analysis of the Arabidopsis genome. Curr Opin Plant Biol 4:105–110

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Boberfeld WOV (1986) Grünlandlehre. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM, Grima-Pettenati J (1996) Lignin genetic engineering. Mol Breed 2:25–39

    Google Scholar 

  • Boudet AM, Lapierre C, Grima-Pettenati J (1995) Biochemistry and molecular biology of lignification. New Phytol 129:203–236

    Article  CAS  Google Scholar 

  • Brummer EC, Robins JG, Alarcon Zuniga B, Luth D (2005) Genetic mapping in tetraploid alfalfa: results and prospects. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, p 149

    Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  PubMed  CAS  Google Scholar 

  • Cai HW, Yuyama N, Tamaki H, Yoshizawa A (2003) Isolation and characterization of simple sequence repeat markers in the hexaploid forage grass timothy. Theor Appl Genet 107:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotech 15:148–154

    Article  PubMed  CAS  Google Scholar 

  • Cardinal AJ, Lee M, Moore KJ (2003) Genetic mapping and comparative analysis of quantitative trait loci affecting fiber and and lignin content in maize. Theor Appl Genet 106:866–874

    PubMed  CAS  Google Scholar 

  • Chalmers J, Johnson X, Lidgett A, Spangenberg GC (2003) Isolation and characterization of a sucrose: sucrose 1-fructosyltransferase gene from perennial ryegrass. J Plant Physiol 160:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Chalmers J, Lidgett A, Cummings N, Cao YY, Forster J, Spangenberg GC (2005) Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotech J 3:459–474

    Article  CAS  Google Scholar 

  • Chen L, Auth CK, Dowling P, Bell J, Wang ZY (2003) Improving forage quality of tall fescue by genetic manipulation of lignin bioynthesis. In: Hopkins A, Wang Z-Y, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Developments in plant breeding, Kluwer Academic Publishing, Dordrecht, pp 181–188

    Google Scholar 

  • Chen L, Auth C, Dowling P, Bell J, Lehmann D, Wang ZY (2004) Transgenic down-regulation of caffeic O-methyltransferase (COMT) led to improved digestibility in tall fescue. Funct Plant Biol 31:235–245

    Article  CAS  Google Scholar 

  • Ching A, Dhugga KS, Appenzeller L, Multani DS, Bourett T, Meeley R, Rafalski AJ (2005) Maize brittle stalk 2 (bk2) gene determines mechanical strength of tissue by mediating cellulose deposition in secondary cell walls. Maize Genet Conf Abstr 47:P30

    Google Scholar 

  • Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Churchill et al (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1136

    Article  PubMed  CAS  Google Scholar 

  • Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005a) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass. Theor Appl Genet 110:364–380

    Article  CAS  Google Scholar 

  • Cogan NOI, Vecchies AC, Yamada T, Smith KF, Forster JW (2005b) QTL analysis of mineral content in perennial ryegrass. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf, Wageningen Academic Publishers, Wageningen, p 153

    Google Scholar 

  • Collazo P, Montoliu L, Puigdomenech P, Rigau J (1992) Structure and expression of the lignin O-methyltransferase gene from Zea mays L. Plant Mol Biol 20:857–867

    Article  PubMed  CAS  Google Scholar 

  • Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–632

    Article  PubMed  CAS  Google Scholar 

  • Davin LB, Bedgar DL, Katayama T, Lewis NG (1992) On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 31:3869–3874

    Article  PubMed  CAS  Google Scholar 

  • Delseny M (2004) Re-evaluating the relevance of ancestral shared synteny as a tool for crop improvement. Curr Opin Plant Biol 7:126–131

    Article  PubMed  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Dhillon BS, Paul C, Zimmer E, Gurrath PA, Klein D, Pollmer WG (1990) Variation and covariation in stover digestibility traits in diallel crosses of maize. Crop Sci 30:931–936

    Article  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Donnison IS, O’Sullivan DM, Thomas A, Canter P, Moore B, Armstead I, Thomas H, Edwards KJ, King IP (2005) Construction of a Festuca pratensis BAC library for map-based cloning in Festulolium substitution lines. Theor Appl Genet 110:846–851

    Article  PubMed  CAS  Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci 33:660–668

    Article  CAS  Google Scholar 

  • Elgersma A (1990) Seed yield related to crop development and to yield components in nine cultivars of perennial ryegrass. Euphytica 49:141–151

    Article  Google Scholar 

  • Farrar K, Thomas I, Humphreys MO, Donnison I (2005) Construction of a BAC library for Lolium perenne. In: Plant animal genome conference XIII abstracts (http://www.intl-pag.org/pag/13/ abstracts/PAG13_P052.html)

    Google Scholar 

  • Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass. Theor Appl Genet 110:12–32

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia M, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–74

    Article  PubMed  CAS  Google Scholar 

  • Fontaine AS, Barrière Y (2003) Caffeic acid O-methyltransferase allelic polymorphism characterization and analysis in different maize inbred lines. Mol Breed 11:69–75

    Article  CAS  Google Scholar 

  • Forster JW, Cogan NOI, Vecchies AC, Pointing RC, Drayton MC, George J, Dumbsday JL, Spangenberg GC, Smith KF (2005) Gene-associated single nucleotide polymorphism (SNP) discovery in perennial ryegrass. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, p 199

    Google Scholar 

  • Forster JW et al (2006) Development of functionally-associated genetic markers for genetic improvement of white clover. In: Plant and animal conference XIV, San Diego CA (http://www.intl-pag.org/14/ abstracts/PAG14_W37.html)

    Google Scholar 

  • Freudenberg K, Harkin JM, Rechert M, Fukuzumi T (1958) Die an der Verholzung beteiligten Enzyme. Die Dehydrierung des Subaoinalkohols. Chem Ber 91:581–590

    Article  CAS  Google Scholar 

  • Frisch M, Melchinger AE (2001) Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci 41:1716–1724

    Article  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Gallagher JA, Cairns AJ, Pollock CJ (2004) Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass L. temulentum L. J Exp Bot 55:557–569

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930

    PubMed  CAS  Google Scholar 

  • Gavnholt B, Larsen K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiol Plantarum 116:273–280

    Article  CAS  Google Scholar 

  • Geiger HH, Seitz G, Melchinger AE, Schmidt GA (1986) Genotypic correlations in forage maize. I. Relationships among yield and quality traits in hybrids. Maydica 37:95–99

    Google Scholar 

  • Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker T, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Groß F (1979) Nährstoffgehalt und Verdaulichkeit von Silomais 1.Mitt: Bewertung von Silomais. Das wirtschaftseigene Futter 25:215–225

    Google Scholar 

  • Gruber MY, Ray H, Blahut-Beatty L (2001) Genetic manipulation of condensed tannin synthesis in forage crops. In: Spangenberg, G (ed) Molecular breeding of forage crops – developments in plant breeding, Kluwer Academic Publishing, Dordrecht

    Google Scholar 

  • Guillet-Claude C, Birolleua-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant J-P, Barrière Y (2004a) Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor Appl Genet 110:126–135

    Article  CAS  Google Scholar 

  • Guillet-Claude C, Birolleua-Touchard C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant J-P, Barrière Y (2004b) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet 5:19–28

    Article  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B (1998) Brown midrib maize (bm1) – a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Article  PubMed  CAS  Google Scholar 

  • Herrmann D, Boller B, Studer B, Widmer F, Kölliker R (2006) QTL analysis of seed yield components in red clover (Trifolium pratense L.). Theor Appl Genet 112:536–545

    Article  PubMed  CAS  Google Scholar 

  • Jensen LB, Andersen J, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T (2005a) QTL mapping of vernalization response in perennial ryegrass reveals cosegregation with an orthologue of wheat VRN1. Theor Appl Genet 110:526–537

    Article  CAS  Google Scholar 

  • Jensen LB, Aarens P, Andersen CH, Holm PB, Ghesquiere M, Julier B, Lübberstedt T, Muylle H, Nielsen KK, de Riek J, Roldán-Ruiz I, Roulund N, Taylor C, Vosman B, Barre P (2005b) Development and mapping of a public erence set of SSR markers in Lolium perenne L. Mol Ecol Notes 5:551–557

    Article  CAS  Google Scholar 

  • Kardailsky I, Bryan G, Faville M, Forester N, Gagic M, Marshall M, Richardson K, Veit B (2005) Controlled flowering project for Lolium perenne at AgResearch. In: Plant and animal conference XIII, San Diego (http://www.intl-pag.org/13/abstracts/PAG13_W100.html)

    Google Scholar 

  • King IP, King J, Armstead IP, Harper JA, Roberts IA, Thomas H, Ougham HJ, Jones RN, Thomas A, Moore BJ, Huang L, Donnison IS (2005) Introgression mapiing in grasses. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, pp 31–42

    Google Scholar 

  • Kirchgessner M, Kellner RJ (1981) Schätzung des energetischen Futterwertes von Grün- un Rauhfutter durch die Cellulasemethode, Landw Forschung 34:276–281

    Google Scholar 

  • Lamkey KR, Schnicker BJ, Melchinger AE (1995) Epistasis in elite maize hybrids and choice of generation for inbred line development. Crop Sci 35:1272–1281

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Lidgett A et al (2005) Gene discovery and molecular dissection of lignin biosynthesis in perennial ryegrass. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, p 180

    Google Scholar 

  • Lübberstedt T (2005) Objectives and benefits of molecular breeding in forage species. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, pp 19–30

    Google Scholar 

  • Lübberstedt T, Melchinger AE, Schön CC, Utz HF, Klein D (1997a) QTL mapping in testcrosses of European flint lines of maize: I. Comparison of different testers for forage yield traits. Crop Sci 37:921–931

    Article  Google Scholar 

  • Lübberstedt T, Melchinger AE, Klein D, Degenhardt H, Paul C (1997b) QTL mapping in testcrosses of European flint lines of maize: II. Comparison of different testers for forage quality traits. Crop Sci 37:1913–1922

    Article  Google Scholar 

  • Lübberstedt T, Melchinger AE, Föhr S, Klein D, Dally A, Westhoff P (1998) QTL mapping in testcrosses of Flint lines of maize: III. Comparison across populations for forage traits. Crop Sci 38:1278–1289

    Article  Google Scholar 

  • Lübberstedt T, Andreasen BS, Holm PB et al (2003) Development of ryegrass allele-specific (GRASP) markers for sustainable grassland improvement – a new EU Framework V project. Czech J Genetics and Plant Breeding 39:125–128

    Google Scholar 

  • Lübberstedt T, Zein I, Andersen JR, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Shi C (2005) Development and application of functional markers in maize. Euphytica 146:101–108

    Article  CAS  Google Scholar 

  • Lübberstedt T, Shi C, Krützfeldt B, Eder J, Wenzel G, Zein I, Ouzunova M (2006) Forschungsstrategien zur Verbesserung der Futterqualität beim Mais. Vorträge für Pflanzenzüchtung 69:27–34

    Google Scholar 

  • Lunde CF, Morrow DJ, Roy LM, Walbot V (2003) Progress in maize gene discovery: a project update. Funct Integr Genomics 3:25–32

    PubMed  CAS  Google Scholar 

  • May GD (2005) Translational genomics for alfalfa varietal improvement. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, pp 55–62

    Google Scholar 

  • McCallum CM et al (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  • McNabb WC, Spencer D, Higgins TJ, Barry TN (1994) In vitro rates of rumen proteolysis of ribulose-1,5-bisphosphatase carboxylase (Rubisco) from Lucerne leaves, and of ovalbumin, vicilin and sunflower albumin 8 storage proteins. J Sci Food Agric 64:53–61

    Article  CAS  Google Scholar 

  • Mechin V, Argillier O, Hebert Y, Guingo E, Moreau L, Charcosset A, Barriere Y (2001) Genetic analysis and QTL mapping of cell-wall digestibility and lignification in silage maize. Crop Sci 41:690–697

    Article  CAS  Google Scholar 

  • Menke KH, Huss W (1987) Tierernährung und Futtermittelkunde, 3rd ed. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Menke KH, Steingaß H (1987) Schätzung des energetischen Futterwertes aus der in vitro mit Pansensaft bestimmten Gasbildung und der chemischen Analyse, II. Regressionsgleichungen. Übersichten zur Tierernährung 15:59–93

    Google Scholar 

  • Nersissian AM, Shipp EL (2002) Blue copper-binding domains. Adv Prot Chemistry 60:271–340

    CAS  Google Scholar 

  • Norris KH, Barnes RF, Moore JE, Shenk JS (1976) Predicting forage quality by infrared lectance spectroscopy. J Anim Sci 43:889–897

    CAS  Google Scholar 

  • O’Donoghue MTO, Spillane C, Guiney E (2005) Minimising bloat through development of white clover with high levels of condensed tannins. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf,. Wageningen Academic Publishers, Wageningen, p 227

    Google Scholar 

  • Parvis N, Boucaud J, Prud’homme MP (2001) Fructans and fructan-metabolizing enzymes in leaves of Lolium perenne. New Phytologist 150:97–110

    Article  Google Scholar 

  • Pointing RC, Drayton MC, Cogan NOI, Spangenberg GC, Smith KF, Forster JW (2005) SNP discovery and haplotype variation in full-length herbage quality genes of perennial ryegrass. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, p 196

    Google Scholar 

  • Posselt U (1984) Hybridzüchtung bei Lolium perenne. Vorträge für Pflanzenzüchtung 5:87–100

    Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  PubMed  CAS  Google Scholar 

  • Raes J, Rohde A, Christensen JH, van de Peer Y, Boerjan W (2003) Genome-wide characterisation of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Guillaumie S, Grabber JH, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. III. Towards a forage grass ideotype. Biologies 327: 467–479

    Article  PubMed  CAS  Google Scholar 

  • Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  PubMed  CAS  Google Scholar 

  • Riday H, Brummer EC (2003) Dissection of heterosis in alfalfa hybrids. In: Hopkins A, Wang Z-Y, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf – Developments in Plant Breeding, Kluwer Academic Publishing, Dordrecht, pp 181–188

    Google Scholar 

  • Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856

    Article  PubMed  CAS  Google Scholar 

  • Robbins MP, Allison GG, Bettany AJE, Dalton SJ, Davies TE, Hauck B (2002) Biochemical and molecular basis of plant composition determining the degradability of forage for ruminant nutrition. In: Durand J-L, Emile J-C, Huyghe C, Lemaire G (eds) Grassland science in Europe – multifunctional grassland: quality forages, animal products and landscapes. Proceedings of the 19th General Meeting of the European Grassland Federation, La Rochelle, France, pp 37–43

    Google Scholar 

  • Robbins MP, Allison G, Bryant D, Morris P (2005) Polyphenolic phenomena: transgenic analysis of some of the factors that regulate the cell-specific accumulation of condensed tannins in forage crops. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, p 226

    Google Scholar 

  • Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    Article  PubMed  CAS  Google Scholar 

  • Rogers GE (1990) Improvement of wool production through genetic engineering. Trends Biotechnol 8:6–11

    Article  PubMed  CAS  Google Scholar 

  • Roussel V, Gibelin C, Fontaine AS, Barriere Y (2002) Genetic analysis in recombinant inbred lines of early dent forage maize. II. QTL mapping for cell-wall constituents and cell-wall digestibility from per se value and top cross experiments. Maydica 47:9–20

    Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    Article  PubMed  CAS  Google Scholar 

  • Sargent TD (1987) Isolation of differentially expressed genes. Meth Enzymol 152:423–432

    Article  PubMed  CAS  Google Scholar 

  • Sato S et al (2005) Comprehensive structural analysis of the genome of red clover. DNA Res 12:301–364

    Article  PubMed  CAS  Google Scholar 

  • Sawbridge T, Ong E-K, Binnion C, Emmerling M, McInnes R, Meath K, Nguyen N, Nunan K, O’Neill M, O’Toole F, Rhodes C, Simmonds J, Tian P, Wearne K, Webster T, Winkworth A, Spangenberg GC (2003) Generation and analysis of expressed sequence tags in perennial ryegrass. Plant Sci 165:1089–1100

    Article  CAS  Google Scholar 

  • Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Schnell FW (1983) Probleme der Elternwahl – Ein Überblick. In: Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein, Austria. November 22–24 1983, Press by Bundesanstalt für alpenländische Landwirtchaft, Gunpenstein, Austria, pp 1–11

    Google Scholar 

  • Shi C, Invardsen C, Thümmler F, Wenzel G, Melchinger AE, Lübberstedt T (2005) Identification of genes differentially expressed in association with SCMV resistance in maize by combining SSH and cDNA array techniques. Mol Gen Genomics 273:450–461

    Article  CAS  Google Scholar 

  • Shi C, Zein I, Ouzunova M, Wenzel G, Lübberstedt T (2006) Transcriptome analysis in maize brown-midrib isogenic lines. Plant Mol Biol 62:697–714

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Uzanowsra A, Ouzumova M, Wenzel G, Lübbestedr T (2007) Association between cell wall digestibility and candidate gene expression profiles by application of genetical genomics to a Flint × Flint maize recombinant imbred line population. BMC Genomics 8:22

    Article  PubMed  CAS  Google Scholar 

  • Spangenberg GC, Kalla R, Lidgett A, Sawbridge T, Ong EK, John U (2001) Breeding forage plants in the genome era. In: Spangenberg G (ed) Molecular breeding of forage crops – developments in plant breeding, Kluwer Academic Publishing, Dordrecht

    Google Scholar 

  • Spangenberg GC et al (2003) Integrated resources for pastoral functional genomics: EST collections, BAC libraries, VIGS systems and microarray-based expression profiling in perennial ryegrass (Lolium perenne), white clover (Trifolium repens) and Neotyphodium grass endophytes. Plant & animal genomes XI conference (http://www.intl-pag.org/11/abstracts/W21_W131_XI.html)

    Google Scholar 

  • Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. J Biol Chem 278:31647–31656

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thornsberry JM et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Br Grassl and Soc 18:104–111

    CAS  Google Scholar 

  • Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet 106:1091–1101

    PubMed  CAS  Google Scholar 

  • Turner LB, Cairns AJ, Armstead IP, Ashton J, Sk øt L, Whittaker D, Humphreys MO (2006) Dissecting the regulation of fructan metabolism in perennial ryegrass with quantitative trait locus mapping. New Phytol 169:45–58

    Article  PubMed  CAS  Google Scholar 

  • Van Soest PJ (1974) Composition and nutritive value of forages. In: Heath ME, Metcalfe DS, Barnes RF (eds) Forages, 3rd edn. Iowa State University Press, Ames, IA, pp 53–63

    Google Scholar 

  • VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    Article  CAS  Google Scholar 

  • Vattikonda MR, Hunter RB (1983) Comparison of grain yield and whole-plant silage production of recommended corn hybrids. Can J Plant Sci 63:601–609

    Article  Google Scholar 

  • Wang Z-Y, Ye XD, Nagel J, Potrykus I, Spangenberg GC (2001) Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue plants. Plant Cell Rep 20:213–219

    Article  CAS  Google Scholar 

  • Wang Z-Y, Hopkins A, Lawrence R, Bell J, Scott M (2003) Field evaluation and risk assessment of trangenic tall fescue plants. In: Hopkins A, Wang Z-Y, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf – developments in plant breeding. Kluwer Academic Publishing, Dordrecht, pp 367–379

    Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    Article  PubMed  CAS  Google Scholar 

  • Webster T, Nguyen N, Rhodes C, Felittie S, Chapman R, Edwards D, Spangenberg GC (2005) A proposal for an international transcriptome initiative for forage and turf: microarray tools for expression profiling in ryegrass, clover, and grass endophytes. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Weißbach F (1993) Bewerten wir die Qualität des Maises richtig? Mais 21:162–165

    Google Scholar 

  • Wilman D, Irianni RAM, Humphreys MO (2004) Stay-green compared with non-stay-green Lolium perenne in field swards with different cutting and nitrogen treatments. Ann Appl Biol 144: 95–101

    Article  Google Scholar 

  • Xing Y, Andreasen BS, Frei U, Lübberstedt T (2006) Development of ryegrass allele-specific markers (GRASP) for rust resistance in Lolium perenne. In: Plant and animal conference XIV, San Diego (http://www.intl-pag.org/14/abstracts/PAG14_W35.html)

    Google Scholar 

  • Yamada T, Forster JW (2005) QTL analysis and trait dissection in ryegrass. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, pp 43–54

    Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalisation gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blecht A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalisation. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Ye XD, Wu XL, Zhao H, Frehner M, Nosberger J, Potrykus I, Spangenberg GC (2001) Altered fructan ccumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis sacB gene. Plant Cell Rep 20:205–212

    Article  CAS  Google Scholar 

  • Yu J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zein I, Wenzel G, Andersen JR, Lübberstedt T (2007) Nucleotide sequence diversity at the Caffeic acid O-methyltransferase locus in 42 European elite maize inbred lines. Gen Res Crop Evol, 54:139–148

    Article  CAS  Google Scholar 

  • Zimmer E, Theune HH, Wermke M (1980) Estimation of nutritive value of silage maize by using chemical parameters and in vitro digestibility. In: Pollmer WG, Phipps RH (eds) Improvement of quality traits of maize for grain and silage use. Martinus Nijhoff Publishers, The Hague, Boston, London, pp 447–465

    Google Scholar 

  • Zimmer E, Gurrath PA, Paul C, Dhillon BS, Pollmer WG, Klein D (1990) Near-infrared lectance spectroscopy analysis of digestibility traits of maize stover. Euphytica 48:73–84

    Google Scholar 

  • Zscheischler J (1990) Handbuch Mais. DLG-Verlag, Frankfurt am Main, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lübberstedt, T. (2007). Application Of Genomics To Forage CROP Breeding For Quality Traits. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_12

Download citation

Publish with us

Policies and ethics