Skip to main content

Stroke Pharmacogenetics

  • Chapter
  • First Online:
Stroke Genetics

Abstract

Pharmacogenomics is a newly emerging speciality dealing with genetic variation in drug response. This chapter provides a comprehensive overview of this discipline with specific examples from the cerebrovascular field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.clinicaltrials.gov

  2. 2.

    www.nice.org.uk/CG034

References

  1. Beutler E. Study of glucose-6-phosphate dehydrogenase: history and molecular biology. Am J Hematol. 1993;42(1):53–8 [Historical Article Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  2. Vogel F. Moderne porbleme der Humangenetik. Ergeb Inn Med Kinderheilkd. 1959;12:52–125.

    Article  Google Scholar 

  3. Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet. 2010;11(4):241–6 [Review].

    Article  PubMed  CAS  Google Scholar 

  4. Administration USFaD. www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm. Accessed 02/01/2012.

  5. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet. 2005;366(9493):1267–78 [Meta-Analysis Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  6. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomized placebo-controlled trial. Lancet. 2002;360(9326):7–22 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  Google Scholar 

  7. Gaist D, Rodriguez LA, Huerta C, Hallas J, Sindrup SH. Lipid-lowering drugs and risk of myopathy: a population-based follow-up study. Epidemiology. 2001;12(5):565–9.

    Article  PubMed  CAS  Google Scholar 

  8. Thompson GR, O’Neill F, Seed M. Why some patients respond poorly to statins and how this might be remedied. Eur Heart J. 2002;23(3):200–6 [Review].

    Article  PubMed  CAS  Google Scholar 

  9. McKenney JM, Davidson MH, Jacobson TA, Guyton JR. Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am J Cardiol. 2006;97(8A):89C–94 [Practice Guideline].

    Article  PubMed  CAS  Google Scholar 

  10. Law M, Rudnicka AR. Statin safety: a systematic review. Am J Cardiol. 2006;97(8A):52C–60 [Review].

    Article  PubMed  CAS  Google Scholar 

  11. Ho PM, Magid DJ, Shetterly SM, Olson KL, Maddox TM, Peterson PN, et al. Medication nonadherence is associated with a broad range of adverse outcomes in patients with coronary artery disease. Am Heart J. 2008;155(4):772–9 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  Google Scholar 

  12. Thompson PD, Clarkson PM, Rosenson RS. An assessment of statin safety by muscle experts. Am J Cardiol. 2006;97(8A):69C–76 [Practice Guideline].

    Article  PubMed  CAS  Google Scholar 

  13. McClure DL, Valuck RJ, Glanz M, Murphy JR, Hokanson JE. Statin and statin-fibrate use was significantly associated with increased myositis risk in a managed care population. J Clin Epidemiol. 2007;60(8):812–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  14. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol. 2004;93(1):104–7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  15. Rosales A, Alvear M, Cuevas A, Saavedra N, Zambrano T, Salazar LA. Identification of pharmacogenetic predictors of lipid-lowering response to atorvastatin in Chilean subjects with hypercholesterolemia. Clin Chim Acta. 2012;413(3–4):495–501.

    Article  PubMed  CAS  Google Scholar 

  16. Gao Y, Zhang LR, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin. Eur J Clin Pharmacol. 2008;64(9):877–82 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  17. Kivisto KT, Niemi M, Schaeffeler E, Pitkala K, Tilvis R, Fromm MF, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics. 2004;14(8):523–5 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  18. Willrich MA, Hirata MH, Genvigir FD, Arazi SS, Rebecchi IM, Rodrigues AC, et al. CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin Chim Acta. 2008;398(1–2):15–20 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  19. Mulder AB, van Lijf HJ, Bon MA, van den Bergh FA, Touw DJ, Neef C, et al. Association of polymorphism in the cytochrome CYP2D6 and the efficacy and tolerability of simvastatin. Clin Pharmacol Ther. 2001;70(6):546–51 [Clinical Trial].

    Article  PubMed  CAS  Google Scholar 

  20. Jones PH. Comparing HMG-CoA reductase inhibitors. Clin Cardiol. 2003;26(1 Suppl 1):I15–20 [Comparative Study Review].

    Article  PubMed  Google Scholar 

  21. Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther. 1999;84(3):413–28 [Review].

    Article  PubMed  CAS  Google Scholar 

  22. Amirimani B, Walker AH, Weber BL, Rebbeck TR. RESPONSE: re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst. 1999;91(18):1588–90.

    Article  PubMed  Google Scholar 

  23. Jacobsen W, Kirchner G, Hallensleben K, Mancinelli L, Deters M, Hackbarth I, et al. Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos. 1999;27(2):173–9 [Comparative Study In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  24. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  25. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  26. Tomlinson B, Hu M, Lee VW, Lui SS, Chu TT, Poon EW, et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther. 2010;87(5):558–62 [Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  27. Bailey KM, Romaine SP, Jackson BM, Farrin AJ, Efthymiou M, Barth JH, et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet. 2010;3(3):276–85 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  28. Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Annu Rev Pharmacol Toxicol. 2003;43:285–307 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  29. Wang E, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001;18(6):800–6.

    Article  PubMed  CAS  Google Scholar 

  30. Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther. 2008;84(4):457–61 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  31. Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC, et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther. 2005;78(5):551–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  32. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. Polymorphisms in the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner. Am J Cardiol. 2004;93(8):1046–50 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  33. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. Interactions between common genetic polymorphisms in ABCG5/G8 and CYP7A1 on LDL cholesterol-lowering response to atorvastatin. Atherosclerosis. 2004;175(2):287–93 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  34. Kajinami K, Brousseau ME, Nartsupha C, Ordovas JM, Schaefer EJ. ATP binding cassette transporter G5 and G8 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin. J Lipid Res. 2004;45(4):653–6 [Multicenter Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  35. Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. 2002;110(1):109–17 [Case Reports Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  36. Takane H, Miyata M, Burioka N, Shigemasa C, Shimizu E, Otsubo K, et al. Pharmacogenetic determinants of variability in lipid-lowering response to pravastatin therapy. J Hum Genet. 2006;51(9):822–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  37. Yadong Y, Ruiz-Narvaez E, Kraft P, et al. Effect of Apolipoprotein E genotype and saturated fat intake on plasma lipids and myocardial infarction in the central valley of Costa Rica. Hum Biol. 2007;79(6):637–47.

    Google Scholar 

  38. Nieminen T, Kahonen M, Viiri LE, Gronroos P, Lehtimaki T. Pharmacogenetics of apolipoprotein E gene during lipid-lowering therapy: lipid levels and prevention of coronary heart disease. Pharmacogenomics. 2008;9(10):1475–86 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  39. Schmitz G, Langmann T. Pharmacogenomics of cholesterol-lowering therapy. Vascul Pharmacol. 2006;44(2):75–89 [Review].

    Article  PubMed  CAS  Google Scholar 

  40. Donnelly LA, Palmer CN, Whitley AL, Lang CC, Doney AS, Morris AD, et al. Apolipoprotein E genotypes are associated with lipid-lowering responses to statin treatment in diabetes: a Go-DARTS study. Pharmacogenet Genomics. 2008;18(4):279–87 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  41. Ballantyne CM, Herd JA, Stein EA, Ferlic LL, Dunn JK, Gotto Jr AM, et al. Apolipoprotein E genotypes and response of plasma lipids and progression-regression of coronary atherosclerosis to lipid-lowering drug therapy. J Am Coll Cardiol. 2000;36(5):1572–8 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  42. Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10(10):1617–24 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  43. Pena R, Lahoz C, Mostaza JM, Jimenez J, Subirats E, Pinto X, et al. Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting. J Intern Med. 2002;251(6):518–25 [Multicenter Study].

    Article  PubMed  CAS  Google Scholar 

  44. Pedro-Botet J, Schaefer EJ, Bakker-Arkema RG, Black DM, Stein EM, Corella D, et al. Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner. Atherosclerosis. 2001;158(1):183–93 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  45. Kuivenhoven JA, Jukema JW, Zwinderman AH, de Knijff P, McPherson R, Bruschke AV, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med. 1998;338(2):86–93 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  46. Carlquist JF, Muhlestein JB, Horne BD, Hart NI, Bair TL, Molhuizen HO, et al. The cholesteryl ester transfer protein Taq1B gene polymorphism predicts clinical benefit of statin therapy in patients with significant coronary artery disease. Am Heart J. 2003;146(6):1007–14 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  47. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton Jr VP, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA. 2004;291(23):2821–7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  48. Donnelly LA, Doney AS, Dannfald J, Whitley AL, Lang CC, Morris AD, et al. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenet Genomics. 2008;18(12):1021–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  49. Krauss RM, Mangravite LM, Smith JD, Medina MW, Wang D, Guo X, et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation. 2008;117(12):1537–44 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  50. Volcik KA, Barkley RA, Hutchinson RG, Mosley TH, Heiss G, Sharrett AR, et al. Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC study participants. Am J Epidemiol. 2006;164(4):342–8 [Research Support, N.I.H., Extramural].

    Article  PubMed  Google Scholar 

  51. Gerdes LU, Gerdes C, Kervinen K, Savolainen M, Klausen IC, Hansen PS, et al. The apolipoprotein epsilon4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation. 2000;101(12):1366–71 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  52. van Venrooij FV, Stolk RP, Banga JD, Sijmonsma TP, van Tol A, Erkelens DW, et al. Common cholesteryl ester transfer protein gene polymorphisms and the effect of atorvastatin therapy in type 2 diabetes. Diabetes Care. 2003;26(4):1216–23 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  53. Regieli JJ, Jukema JW, Grobbee DE, Kastelein JJ, Kuivenhoven JA, Zwinderman AH, et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur Heart J. 2008;29(22):2792–9 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  54. Boekholdt SM, Sacks FM, Jukema JW, Shepherd J, Freeman DJ, McMahon AD, et al. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation. 2005;111(3):278–87 [Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  55. Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  56. Betteridge DJ, Broome K, Durrington PN, Mann JI, Miller JP, Neil HAW, et al. Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ. 1991;303(6807):893–6.

    Google Scholar 

  57. O’Malley JP, Illingworth DR. The influence of apolipoprotein E phenotype on the response to lovastatin therapy in patients with heterozygous familial hypercholesterolemia. Metabolism. 1990;39(2):150–4 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  Google Scholar 

  58. Leitersdorf E, Eisenberg S, Eliav O, Friedlander Y, Berkman N, Dann EJ, et al. Genetic determinants of responsiveness to the HMG-CoA reductase inhibitor fluvastatin in patients with molecularly defined heterozygous familial hypercholesterolemia. Circulation. 1993;87(4 Suppl):III35–44 [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  59. Jeenah M, September W, GraadtvanRoggen F, de Villiers W, Seftel H, Marais D. Influence of specific mutations at the LDL-receptor gene locus on the response to simvastatin therapy in Afrikaner patients with heterozygous familial hypercholesterolaemia. Atherosclerosis. 1993;98(1):51–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  60. Leren TP, Hjermann I. Is responsiveness to lovastatin in familial hypercholesterolaemia heterozygotes influenced by the specific mutation in the low-density lipoprotein receptor gene? Eur J Clin Invest. 1995;25(12):967–73 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  61. Vuorio AF, Ojala JP, Sarna S, Turtola H, Tikkanen MJ, Kontula K. Heterozygous familial hypercholesterolaemia: the influence of the mutation type of the low-density-lipoprotein receptor gene and PvuII polymorphism of the normal allele on serum lipid levels and response to lovastatin treatment. J Intern Med. 1995;237(1):43–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  62. Kajinami K, Yagi K, Higashikata T, Inazu A, Koizumi J, Mabuchi H. Low-density lipoprotein receptor genotype-dependent response to cholesterol lowering by combined pravastatin and cholestyramine in familial hypercholesterolemia. Am J Cardiol. 1998;82(1):113–7 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  63. Sijbrands EJ, Lombardi MP, Westendorp RG, Leuven JA, Meinders AE, Van der Laarse A, et al. Similar response to simvastatin in patients heterozygous for familial hypercholesterolemia with mRNA negative and mRNA positive mutations. Atherosclerosis. 1998;136(2):247–54.

    Article  PubMed  CAS  Google Scholar 

  64. Sun XM, Patel DD, Knight BL, Soutar AK. Influence of genotype at the low density lipoprotein (LDL) receptor gene locus on the clinical phenotype and response to lipid-lowering drug therapy in heterozygous familial hypercholesterolaemia. The Familial Hypercholesterolaemia Regression Study Group. Atherosclerosis. 1998;136(1):175–85 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  65. Heath KE, Gudnason V, Humphries SE, Seed M. The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-lowering response of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia. Atherosclerosis. 1999;143(1):41–54 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  66. Chaves FJ, Real JT, Garcia-Garcia AB, Civera M, Armengod ME, Ascaso JF, et al. Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population: influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol. J Clin Endocrinol Metabol. 2001;86(10):4926–32 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  Google Scholar 

  67. Vohl MC, Szots F, Lelievre M, Lupien PJ, Bergeron J, Gagne C, et al. Influence of LDL receptor gene mutation and apo E polymorphism on lipoprotein response to simvastatin treatment among adolescents with heterozygous familial hypercholesterolemia. Atherosclerosis. 2002;160(2):361–8 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  68. Couture P, Brun LD, Szots F, Lelievre M, Gaudet D, Despres JP, et al. Association of specific LDL receptor gene mutations with differential plasma lipoprotein response to simvastatin in young French Canadians with heterozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1998;18(6):1007–12 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  69. Mangravite LM, Medina MW, Cui J, Pressman S, Smith JD, Rieder MJ, et al. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler Thromb Vasc Biol. 2010;30(7):1485–92 [Clinical Trial Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  70. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138(5 Pt 2):S419–20 [Review].

    Article  PubMed  CAS  Google Scholar 

  71. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  72. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 2002;105(10):1158–61 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  73. Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation. 2001;104(25):3103–8 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  74. Wang L, Zhang X, Liu L, Yang R, Cui L, Li M. Atorvastatin protects rat brains against permanent focal ischemia and downregulates HMGB1, HMGB1 receptors (RAGE and TLR4), NF-kappaB expression. Neurosci Lett. 2010;471(3):152–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  75. Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp Neurol. 2009;216(2):398–406 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  76. Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med. 2002;347(3):185–92 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  77. Boekholdt SM, Agema WR, Peters RJ, Zwinderman AH, van der Wall EE, Reitsma PH, et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation. 2003;107(19):2416–21 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  78. Shiffman D, Chasman DI, Zee RY, Iakoubova OA, Louie JZ, Devlin JJ, et al. A kinesin family member 6 variant is associated with coronary heart disease in the Women’s Health Study. J Am Coll Cardiol. 2008;51(4):444–8.

    Article  PubMed  CAS  Google Scholar 

  79. Shiffman D, O’Meara ES, Bare LA, Rowland CM, Louie JZ, Arellano AR, et al. Association of gene variants with incident myocardial infarction in the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 2008;28(1):173–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  80. Shiffman D, O’Meara ES, Rowland CM, Louie JZ, Cushman M, Tracy RP, et al. The contribution of a 9p21.3 variant, a KIF6 variant, and C-reactive protein to predicting risk of myocardial infarction in a prospective study. BMC Cardiovasc Disord. 2011;11:10 [Comparative Study Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  81. Lakoubova OA, Robertson M, Tong CH, Rowland CM, Catanese JJ, Blauw GJ, Jukema JW, Murphy MB, Devlin JJ, Ford I, Shepherd J. KIF6 Trp719Arg polymorphism and the effect of statin therapy in elderly patients: results from the PROSPER study. Eur J Cardiovasc Prev Rehabil. 2010;17(4):455–61.

    Article  Google Scholar 

  82. Lakoubova O, Tong CH, Rowland CM, Kirchgessner TG, Young BA, Arenallo AR, Shiffman D, Sabatine MS, Campos H, Packard CJ, Pfeffer MA, White TJ, Braunwald E, Shepherd J, Devlin JJ, Sack FM. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008;51(4):435–43.

    Article  CAS  Google Scholar 

  83. Lakoubova OA, Sabatine M, Rowland CM, Tong CH, Catanese JJ, Ranade K, Simonsen KL, Kirchgessner TG, Cannon CP, Devlin JJ, Braunwald E. Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 study. J Am Coll Cardiol. 2008;51(4):449–55.

    Article  CAS  Google Scholar 

  84. Assimes TL, Holm H, Kathiresan S, Reilly MP, Thorleifsson G, Voight BF, et al. Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case–control studies. J Am Coll Cardiol. 2010;56(19):1552–63 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  85. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  86. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55(25):2833–42 [Meta-Analysis Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  87. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  88. Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26(5):1094–100.

    Article  PubMed  CAS  Google Scholar 

  89. Pisciotta L, et al., Leucine 10 allelic variant in signal peptide of PCSK9 increases the LDL cholesterollowering effect of statins in patients with familial hypercholesterolaemia, Nutrition, Metabolism & Cardiovascular Diseases 2011, doi:10.1016/j.numecd.2011.04.003.

  90. Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated ­convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24(8):1454–9 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  91. Awan Z, Seidah NG, Macfadyen JG, Benjannet S, Chasman DI, Ridker PM, et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin Chem. 2012;58(1):183–9.

    Article  PubMed  CAS  Google Scholar 

  92. Welder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res. 2010;51(9):2714–21 [Clinical Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  93. Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet. 2008;40(2):149–51 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  94. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–41 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  95. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358(12):1240–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  96. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41(1):56–65 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  97. Barber MJ, Mangravite LM, Hyde CL, Chasman DI, Smith JD, McCarty CA, et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One. 2010;5(3):e9763 [Clinical Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  98. Thompson JF, Hyde CL, Wood LS, Paciga SA, Hinds DA, Cox DR, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ Cardiovasc Genet. 2009;2(2):173–81 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  99. Trompet S, de Craen AJ, Postmus I, Ford I, Sattar N, Caslake M, et al. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses. BMC Med Genet. 2011;12:131 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t Validation Studies].

    Article  PubMed  CAS  Google Scholar 

  100. Frudakis TN, Thomas MJ, Ginjupalli SN, Handelin B, Gabriel R, Gomez HJ. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet Genomics. 2007;17(9):695–707 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  101. Zuccaro P, Mombelli G, Calabresi L, Baldassarre D, Palmi I, Sirtori CR. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol Res. 2007;55(4):310–7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  102. Morimoto K, Ueda S, Seki N, Igawa Y, Kameyama Y, Shimizu A, Oishi T, Hosokawa M, Chiba K. Candidate gene approach for the study of genetic factors involved in HMG-CoA reductase inhibitor-induced rhabdomyolysis. Eighteenth JSSX annual meeting, Japan. 2003:8PE–32.

    Google Scholar 

  103. Hermann M, Bogsrud MP, Molden E, Asberg A, Mohebi BU, Ose L, et al. Exposure of atorvastatin is unchanged but lactone and acid metabolites are increased several-fold in patients with atorvastatin-induced myopathy. Clin Pharmacol Ther. 2006;79(6):532–9.

    Article  PubMed  CAS  Google Scholar 

  104. Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther. 2010;87(1):130–3 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  105. Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos. 2008;36(10):2014–23 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  106. Fujino H, Saito T, Ogawa S, Kojima J. Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol. 2005;57(10):1305–11.

    Article  PubMed  CAS  Google Scholar 

  107. Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol. 2009;68(2):207–13 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  108. Konig J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000;278(1):G156–64 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  109. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82(6):726–33 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  110. Ho RH, Choi L, Lee W, Mayo G, Schwarz UI, Tirona RG, et al. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics. 2007;17(8):647–56 [Clinical Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  111. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873–9 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  112. Donnelly LA, Doney AS, Tavendale R, Lang CC, Pearson ER, Colhoun HM, et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther. 2011;89(2):210–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  113. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med. 2008;359(8):789–99 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  114. Brunham LR, Lansberg PJ, Zhang L, Miao F, Carter C, Hovingh GK, et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 2012;12(3):233–7.

    Google Scholar 

  115. Morimoto K, Oishi T, Ueda S, Ueda M, Hosokawa M, Chiba K. A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab Pharmacokinet. 2004;19(6):453–5 [Case Reports Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  116. Voora D, Shah SH, Spasojevic I, Ali S, Reed CR, Salisbury BA, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54(17):1609–16 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  117. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 2003;289(13):1681–90 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  118. Willis RA, Folkers K, Tucker JL, Ye CQ, Xia LJ, Tamagawa H. Lovastatin decreases coenzyme Q levels in rats. Proc Natl Acad Sci USA. 1990;87(22):8928–30 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  119. Folkers K, Langsjoen P, Willis R, Richardson P, Xia LJ, Ye CQ, et al. Lovastatin decreases coenzyme Q levels in humans. Proc Natl Acad Sci USA. 1990;87(22):8931–4 [Case Reports Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  120. James AM, Smith RA, Murphy MP. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys. 2004;423(1):47–56 [Review].

    Article  PubMed  CAS  Google Scholar 

  121. Davidson M, McKenney J, Stein E, Schrott H, Bakker-Arkema R, Fayyad R, et al. Comparison of one-year efficacy and safety of atorvastatin versus lovastatin in primary hypercholesterolemia. Atorvastatin Study Group I. Am J Cardiol. 1997;79(11):1475–81 [Clinical Trial Comparative Study Multicenter Study Randomized Controlled Trial].

    Article  PubMed  CAS  Google Scholar 

  122. Puccetti L, Ciani F, Auteri A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case–control study. Atherosclerosis. 2010;211(1):28–9 [Letter Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  123. Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis. 2007;6:7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  124. Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49(23):2231–7 [Review].

    Article  PubMed  CAS  Google Scholar 

  125. Caso G, Kelly P, McNurlan MA, Lawson WE. Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. Am J Cardiol. 2007;99(10):1409–12 [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  126. Young JM, Florkowski CM, Molyneux SL, McEwan RG, Frampton CM, George PM, et al. Effect of coenzyme Q(10) supplementation on simvastatin-induced myalgia. Am J Cardiol. 2007;100(9):1400–3 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  127. Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K, McKnight B, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011;21(5):280–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  128. Vladutiu GD. Genetic predisposition to statin myopathy. Curr Opin Rheumatol. 2008;20(6):648–55 [Review].

    Article  PubMed  CAS  Google Scholar 

  129. Kopplow K, Letschert K, Konig J, Walter B, Keppler D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol. 2005;68(4):1031–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  130. Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, et al. The lifetime risk of stroke: estimates from the Framingham Study. Stroke. 2006;37(2):345–50 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  131. Freis ED, Arias LA, Armstrong ML, Blount AW, Calabresi M, Castle CH, et al. Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA. 1967;202(11):1028–34 [Clinical Trial Comparative Study Randomized Controlled Trial].

    Google Scholar 

  132. Control of moderately raised blood pressure. Report of a co-operative randomized controlled trial. Br Med J. 1973;3(5877):434–6 [Clinical Trial Randomized Controlled Trial].

    Google Scholar 

  133. Amery A, Birkenhager W, Brixko P, Bulpitt C, Clement D, Deruyttere M, et al. Mortality and morbidity results from the European Working Party on High Blood Pressure in the Elderly trial. Lancet. 1985;1(8442):1349–54 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  134. McCarthy M. Randomized trial of treatment of hypertension in elderly patients in primary care. Br Med J (Clin Res Ed). 1986;293(6561):1570 [Letter].

    Article  CAS  Google Scholar 

  135. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19 [Practice Guideline].

    Article  PubMed  CAS  Google Scholar 

  136. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981–97 [Clinical Trial Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Google Scholar 

  137. Ferdinand KC, Armani AM. The management of hypertension in African Americans. Crit Pathw Cardiol. 2007;6(2):67–71 [Review].

    Article  PubMed  Google Scholar 

  138. Rahman M, Douglas JG, Wright Jr JT. Pathophysiology and treatment implications of hypertension in the African-American population. Endocrinol Metab Clin North Am. 1997;26(1):125–44 [Review].

    Article  PubMed  CAS  Google Scholar 

  139. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27(3 Pt 2):481–90 [Review].

    Article  PubMed  CAS  Google Scholar 

  140. Kimura G, Deguchi F, Kojima S, Ashida T, Yoshimi H, Abe H, et al. Antihypertensive drugs and sodium restriction. Analysis of their interaction based on pressure-natriuresis relationship. Am J Hypertens. 1988;1(4 Pt 1):372–9 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  141. Low-dose captopril for the treatment of mild to moderate hypertension. I. Results of a 14-week trial. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Arch Intern Med. 1984;144(10):1947–53 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Google Scholar 

  142. Brewster LM, van Montfrans GA, Kleijnen J. Systematic review: antihypertensive drug therapy in black patients. Ann Intern Med. 2004;141(8):614–27 [Meta-Analysis Review].

    PubMed  Google Scholar 

  143. Saunders E, Weir MR, Kong BW, Hollifield J, Gray J, Vertes V, et al. A comparison of the efficacy and safety of a beta-blocker, a calcium channel blocker, and a converting enzyme inhibitor in hypertensive blacks. Arch Intern Med. 1990;150(8):1707–13 [Clinical Trial Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  144. Drayer JI, Weber MA. Monotherapy of essential hypertension with a converting-enzyme inhibitor. Hypertension. 1983;5(5 Pt 2):108–13 [Clinical Trial Randomized Controlled Trial].

    Google Scholar 

  145. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  146. Niu W, Qi Y, Hou S, Zhai X, Zhou W, Qiu C. Haplotype-based association of the renin-angiotensin-aldosterone system genes polymorphisms with essential hypertension among Han Chinese: the Fangshan study. J Hypertens. 2009;27(7):1384–91 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  147. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992;71(1):169–80 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  148. Sethi AA, Nordestgaard BG, Tybjaerg-Hansen A. Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta-analysis. Arterioscler Thromb Vasc Biol. 2003;23(7):1269–75 [Meta-Analysis Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  149. Danser AH, Schalekamp MA, Bax WA, van den Brink AM, Saxena PR, Riegger GA, et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation. 1995;92(6):1387–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  150. Bis JC, Smith NL, Psaty BM, Heckbert SR, Edwards KL, Lemaitre RN, et al. Angiotensinogen Met235Thr polymorphism, angiotensin-converting enzyme inhibitor therapy, and the risk of nonfatal stroke or myocardial infarction in hypertensive patients. Am J Hypertens. 2003;16(12):1011–7 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  151. Schelleman H, Klungel OH, Witteman JC, Breteler MM, Yazdanpanah M, Danser AH, et al. Angiotensinogen M235T polymorphism and the risk of myocardial infarction and stroke among hypertensive patients on ACE-inhibitors or beta-blockers. Eur J Hum Genet. 2007;15(4):478–84 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  152. Johnston CI, Jackson B, McGrath B, Matthews G, Arnolda L. Relationship of antihypertensive effect of enalapril to serum MK-422 levels and angiotensin converting enzyme inhibition. J Hypertens Suppl. 1983;1(1):71–5 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  153. Harrap SB, Tzourio C, Cambien F, Poirier O, Raoux S, Chalmers J, et al. The ACE gene I/D polymorphism is not associated with the blood pressure and cardiovascular benefits of ACE inhibition. Hypertension. 2003;42(3):297–303 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  154. Brugts JJ, Boersma E, Simoons ML. Tailored therapy of ACE inhibitors in stable coronary artery disease: pharmacogenetic profiling of treatment benefit. Pharmacogenomics. 2010;11(8):1115–26 [Review].

    Article  PubMed  CAS  Google Scholar 

  155. Slater EE, Merrill DD, Guess HA, Roylance PJ, Cooper WD, Inman WH, et al. Clinical profile of angioedema associated with angiotensin converting-enzyme inhibition. JAMA. 1988;260(7):967–70.

    Article  PubMed  CAS  Google Scholar 

  156. Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med. 1992;117(3):234–42 [Review].

    PubMed  CAS  Google Scholar 

  157. Lefebvre J, Murphey LJ, Hartert TV, Jiao Shan R, Simmons WH, Brown NJ. Dipeptidyl peptidase IV activity in patients with ACE-inhibitor-associated angioedema. Hypertension. 2002;39(2 Pt 2):460–4 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  158. Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3(3):311–7 [Review].

    Article  PubMed  CAS  Google Scholar 

  159. Brown NJ, Ray WA, Snowden M, Griffin MR. Black Americans have an increased rate of angiotensin converting enzyme inhibitor-associated angioedema. Clin Pharmacol Ther. 1996;60(1):8–13 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  160. Gibbs CR, Lip GY, Beevers DG. Angioedema due to ACE inhibitors: increased risk in patients of African origin. Br J Clin Pharmacol. 1999;48(6):861–5.

    Article  PubMed  CAS  Google Scholar 

  161. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci. 2005;99(1):6–38 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  162. Duan QL, Nikpoor B, Dube MP, Molinaro G, Meijer IA, Dion P. A variant in XPNPEP2 is associated with angioedema induced by angiotensin I-converting enzyme inhibitors. Am J Hum Genet. 2005;77(4):617–26 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  163. Woodard-Grice AV, Lucisano AC, Byrd JB, Stone ER, Simmons WH, Brown NJ. Sex-dependent and race-dependent association of XPNPEP2 C-2399A polymorphism with angiotensin-converting enzyme inhibitor-associated angioedema. Pharmacogenet Genomics. 2010;20(9):532–6 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  164. Gulec M, Caliskaner Z, Tunca Y, Ozturk S, Bozoglu E, Gul D. The role of ace gene polymorphism in the development of angioedema secondary to angiotensin converting enzyme inhibitors and angiotensin II receptor blockers. Allergol Immunopathol. 2008;36(3):134–40.

    Article  CAS  Google Scholar 

  165. Bas M, Hoffmann TK, Tiemann B, Dao VT, Bantis C, Balz V. Potential genetic risk factors in angiotensin-converting enzyme-inhibitor-induced angio-oedema. Br J Clin Pharmacol. 2010;69(2):179–86 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  166. Hoffman BB, Hardman JG, Limbard LE. Catecholamines, sympathomimetic drugs and adrenergic receptor antagonists. In: Hardman JGL LE, editor. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2001. p. 215–68.

    Google Scholar 

  167. McGourty JC, Silas JH, Lennard MS, Tucker GT, Woods HF. Metoprolol metabolism and debrisoquine oxidation polymorphism – population and family studies. Br J Clin Pharmacol. 1985;20(6):555–66 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  168. Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF. Oxidation phenotype – a major determinant of metoprolol metabolism and response. N Engl J Med. 1982;307(25):1558–60 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  169. Ismail R, Teh LK. The relevance of CYP2D6 genetic polymorphism on chronic metoprolol therapy in cardiovascular patients. J Clin Pharm Ther. 2006;31(1):99–109 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  170. Fux R, Morike K, Prohmer AM, Delabar U, Schwab M, Schaeffeler E. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther. 2005;78(4):378–87 [Clinical Trial Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  171. Rau T, Heide R, Bergmann K, Wuttke H, Werner U, Feifel N. Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics. 2002;12(6):465–72 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  172. Goryachkina K, Burbello A, Boldueva S, Babak S, Bergman U, Bertilsson L. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. Eur J Clin Pharmacol. 2008;64(12):1163–73 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  173. Rau T, Wuttke H, Michels LM, Werner U, Bergmann K, Kreft M. Impact of the CYP2D6 genotype on the clinical effects of metoprolol: a prospective longitudinal study. Clin Pharmacol Ther. 2009;85(3):269–72 [Comparative Study].

    Article  PubMed  CAS  Google Scholar 

  174. Baudhuin LM, Miller WL, Train L, Bryant S, Hartman KA, Phelps M, et al. Relation of ADRB1, CYP2D6, and UGT1A1 polymorphisms with dose of, and response to, carvedilol or metoprolol therapy in patients with chronic heart failure. Am J Cardiol. 2010;106(3):402–8.

    Article  PubMed  CAS  Google Scholar 

  175. Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, et al. Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol. J Pharm Pharm Sci. 2006;9(1):101–12.

    PubMed  CAS  Google Scholar 

  176. Johnsson G, Regardh CG. Clinical pharmacokinetics of beta-adrenoreceptor blocking drugs. Clin Pharmacokinet. 1976;1(4):233–63 [Review].

    Article  PubMed  CAS  Google Scholar 

  177. Melander A, Danielson K, Schersten B, Wahlin E. Enhancement of the bioavailability of propranolol and metoprolol by food. Clin Pharmacol Ther. 1977;22(1):108–12.

    PubMed  CAS  Google Scholar 

  178. Keating GM, Jarvis B. Carvedilol: a review of its use in chronic heart failure. Drugs. 2003;63(16):1697–741 [Review].

    Article  PubMed  CAS  Google Scholar 

  179. Azuma J, Nonen S. Chronic heart failure: beta-blockers and pharmacogenetics. Eur J Clin Pharmacol. 2009;65(1):3–17 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  180. Johnson JA, Liggett SB. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther. 2011;89(3):366–78 [Research Support, N.I.H., Extramural Review].

    Article  PubMed  CAS  Google Scholar 

  181. Suonsyrja T, Donner K, Hannila-Handelberg T, Fodstad H, Kontula K, Hiltunen TP. Common genetic variation of beta1- and beta2-adrenergic receptor and response to four classes of antihypertensive treatment. Pharmacogenet Genomics. 2010;20(5):342–5 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  182. Liu J, Liu ZQ, Tan ZR, Chen XP, Wang LS, Zhou G. Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther. 2003;74(4):372–9 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  183. Liu J, Liu ZQ, Yu BN, Xu FH, Mo W, Zhou G. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80(1):23–32 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  184. Sofowora GG, Dishy V, Muszkat M, Xie HG, Kim RB, Harris PA. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin Pharmacol Ther. 2003;73(4):366–71 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  185. Pacanowski MA, Gong Y, Cooper-Dehoff RM, Schork NJ, Shriver MD, Langaee TY. beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension. Clin Pharmacol Ther. 2008;84(6):715–21 [Comparative Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  186. Zanchetti A. Role of calcium antagonists in systemic hypertension. Am J Cardiol. 1987;59(3):130B–6.

    Article  PubMed  CAS  Google Scholar 

  187. Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687–710 [Review].

    Article  PubMed  CAS  Google Scholar 

  188. Siller-Matula JM, Lang I, Christ G, Jilma B. Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol. 2008;52(19):1557–63 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  189. Gremmel T, Steiner S, Seidinger D, Koppensteiner R, Panzer S, Kopp CW. Calcium-channel blockers decrease clopidogrel-mediated platelet inhibition. Heart. 2010;96(3):186–9.

    Article  PubMed  CAS  Google Scholar 

  190. Harmsze AM, Robijns K, van Werkum JW, Breet NJ, Hackeng CM, Ten Berg JM. The use of amlodipine, but not of P-glycoprotein inhibiting calcium channel blockers is associated with clopidogrel poor-response. Thromb Haemost. 2010;103(5):920–5 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  191. Peng Y, Chen M, Chai H, Liu XJ, Yan SD, Li Q. Impact of combination of calcium-channel blockers with clopidogrel on clinical outcomes in patients with coronary artery disease. Int J Cardiol. 2011;149(2):274–6 [Comparative Study Letter Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  192. van Brummelen P, Man in ’t Veld AJ, Schalekamp MA. Hemodynamic changes during long-term thiazide treatment of essential hypertension in responders and nonresponders. Clin Pharmacol Ther. 1980;27(3):328–36 [Clinical Trial Controlled Clinical Trial].

    Article  PubMed  Google Scholar 

  193. Vaughan Jr ED, Carey RM, Peach MJ, Ackerly JA, Ayers CR. The renin response to diuretic therapy: a limitation of antihypertensive potential. Circ Res. 1978;42(3):376–81 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  194. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  195. Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. WNK1 kinase polymorphism and blood pressure response to a thiazide diuretic. Hypertension. 2005;46(4):758–65 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  196. Turner ST, Bailey KR, Fridley BL, Chapman AB, Schwartz GL, Chai HS. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension. 2008;52(2):359–65 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  197. Dickerson JE, Hingorani AD, Ashby MJ, Palmer CR, Brown MJ. Optimisation of antihypertensive treatment by crossover rotation of four major classes. Lancet. 1999;353(9169):2008–13 [Clinical Trial Comparative Study Controlled Clinical Trial].

    Article  PubMed  CAS  Google Scholar 

  198. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482–94 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  199. Jackson SP. Arterial thrombosis - insidious, unpredictable and deadly. Nat. Med. 2011 Nov 7;17(11):1423–36. doi: 10.1038/nm.2515.

  200. Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost. 2009;7(7):1057–66 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  201. Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep. 2008;60(1):3–11 [Historical Article Review].

    PubMed  CAS  Google Scholar 

  202. Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev. 2011;25(4):155–67 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  203. Fay WP, Murphy JG, Owen WG. High concentrations of active plasminogen activator inhibitor-1 in porcine coronary artery thrombi. Arterioscler Thromb Vasc Biol. 1996;16(10):1277–84 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  204. Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP. Nucleotide receptor signaling in platelets. J Thromb Haemost. 2006;4(11):2317–26 [Review].

    Article  PubMed  CAS  Google Scholar 

  205. Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in G alpha(q)-deficient mice. Nature. 1997;389(6647):183–6 [In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  206. Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest. 2004;113(3):340–5 [Review].

    PubMed  CAS  Google Scholar 

  207. Storey RF, Judge HM, Wilcox RG, Heptinstall S. Inhibition of ADP-induced P-selectin expression and platelet-leukocyte conjugate formation by clopidogrel and the P2Y12 receptor antagonist AR-C69931MX but not aspirin. Thromb Haemost. 2002;88(3):488–94 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  208. Gross PL, Weitz JI. New antithrombotic drugs. Clin Pharmacol Ther. 2009;86(2):139–46 [Review].

    Article  PubMed  CAS  Google Scholar 

  209. Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86 [Meta-Analysis Research Support, Non-U.S. Gov’t].

    Google Scholar 

  210. Swedish Aspirin Low-Dose Trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischaemic events. The SALT Collaborative Group. Lancet. 1991;338(8779):1345–9 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Google Scholar 

  211. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci USA. 1975;72(8):3073–6 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  212. Vesterqvist O, Green K. Urinary excretion of 2,3-dinor-thromboxane B2 in man under normal conditions, following drugs and during some pathological conditions. Prostaglandins. 1984;27(4):627–44 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  213. Hankey GJ, Eikelboom JW. Aspirin resistance. Lancet. 2006;367(9510):606–17 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  214. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56(3):387–437 [Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  215. Capone ML, Tacconelli S, Sciulli MG, Grana M, Ricciotti E, Minuz P, et al. Clinical pharmacology of platelet, monocyte, and vascular cyclooxygenase inhibition by naproxen and low-dose aspirin in healthy subjects. Circulation. 2004;109(12):1468–71 [Clinical Trial Comparative Study Controlled Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  216. Wallace JL, Chin BC. Inflammatory mediators in gastrointestinal defense and injury. Proc Soc Exp Biol Med. 1997;214(3):192–203 [Review].

    PubMed  CAS  Google Scholar 

  217. McQuaid KR, Laine L. Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am J Med. 2006;119(8):624–38 [Meta-Analysis Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  218. Ma L, Elliott SN, Cirino G, Buret A, Ignarro LJ, Wallace JL. Platelets modulate gastric ulcer healing: role of endostatin and vascular endothelial growth factor release. Proc Natl Acad Sci USA. 2001;98(11):6470–5 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  219. Konturek SJ, Dembinski A, Warzecha Z, Brzozowski T, Gregory H. Role of epidermal growth factor in healing of chronic gastroduodenal ulcers in rats. Gastroenterology. 1988;94(6):1300–7.

    PubMed  CAS  Google Scholar 

  220. Tarnawski A, Szabo IL, Husain SS, Soreghan B. Regeneration of gastric mucosa during ulcer healing is triggered by growth factors and signal transduction pathways. J Physiol Paris. 2001;95(1–6):337–44 [Research Support, U.S. Gov’t, Non-P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  221. Algra A, van Gijn J. Cumulative meta-analysis of aspirin efficacy after cerebral ischaemia of arterial origin. J Neurol Neurosurg Psychiatry. 1999;66(2):255 [Comment Letter].

    Article  PubMed  CAS  Google Scholar 

  222. Fowkes FG, Price JF, Stewart MC, Butcher I, Leng GC, Pell AC, et al. Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA. 2010;303(9):841–8 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  223. Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomized trials. Lancet. 2009;373(9678):1849–60 [Meta-Analysis Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  224. Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR. Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ. 2008;336(7637):195–8 [Meta-Analysis Review].

    Article  PubMed  CAS  Google Scholar 

  225. Weber AA, Przytulski B, Schanz A, Hohlfeld T, Schror K. Towards a definition of aspirin resistance: a typological approach. Platelets. 2002;13(1):37–40.

    Article  PubMed  CAS  Google Scholar 

  226. Bhatt DL, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov. 2003;2(1):15–28 [Review].

    Article  PubMed  CAS  Google Scholar 

  227. Fitzgerald R, Pirmohamed M. Aspirin resistance Effect of clinical, biochemical and genetic factors Pharmacology & Therapeutics 2011;130(2):213–25.

    Google Scholar 

  228. Lordkipanidze M, Pharand C, Schampaert E, Turgeon J, Palisaitis DA, Diodati JG. A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur Heart J. 2007;28(14):1702–8 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  229. O’Donnell CJ, Larson MG, Feng D, Sutherland PA, Lindpaintner K, Myers RH, et al. Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation. 2001;103(25):3051–6 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  Google Scholar 

  230. Faraday N, Yanek LR, Mathias R, Herrera-Galeano JE, Vaidya D, Moy TF, et al. Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation. 2007;115(19):2490–6 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural].

    Article  PubMed  CAS  Google Scholar 

  231. Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–69 [Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  232. Hutt AJ, Caldwell J, Smith RL. The metabolism of aspirin in man: a population study. Xenobiotica. 1986;16(3):239–49 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  233. Chan AT, Tranah GJ, Giovannucci EL, Hunter DJ, Fuchs CS. Genetic variants in the UGT1A6 enzyme, aspirin use, and the risk of colorectal adenoma. J Natl Cancer Inst. 2005;97(6):457–60 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  234. Hubner RA, Muir KR, Liu JF, Logan RF, Grainge M, Armitage N, et al. Genetic variants of UGT1A6 influence risk of colorectal adenoma recurrence. Clin Cancer Res. 2006;12(21):6585–9 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  235. Samowitz WS, Wolff RK, Curtin K, Sweeney C, Ma KN, Andersen K, et al. Interactions between CYP2C9 and UGT1A6 polymorphisms and nonsteroidal anti-inflammatory drugs in colorectal cancer prevention. Clin Gastroenterol Hepatol. 2006;4(7):894–901 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  236. Ciotti M, Marrone A, Potter C, Owens IS. Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: pharmacological implications. Pharmacogenetics. 1997;7(6):485–95 [Comparative Study].

    Article  PubMed  CAS  Google Scholar 

  237. van Oijen MG, Huybers S, Peters WH, Drenth JP, Laheij RJ, Verheugt FW, et al. Polymorphisms in genes encoding acetylsalicylic acid metabolizing enzymes are unrelated to upper gastrointestinal health in cardiovascular patients on acetylsalicylic acid. Br J Clin Pharmacol. 2005;60(6):623–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  238. Halushka MK, Walker LP, Halushka PV. Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clin Pharmacol Ther. 2003;73(1):122–30 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  239. Maree AO, Curtin RJ, Chubb A, Dolan C, Cox D, O’Brien J, et al. Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J Thromb Haemost. 2005;3(10):2340–5 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  240. Lepantalo A, Mikkelsson J, Resendiz JC, Viiri L, Backman JT, Kankuri E, et al. Polymorphisms of COX-1 and GPVI associate with the antiplatelet effect of aspirin in coronary artery disease patients. Thromb Haemost. 2006;95(2):253–9 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  241. Chakroun T, Addad F, Yacoub S, Abderrezak F, Gerotziafas GT, Abdelkafi S, et al. The cyclooxygenase-1 C50T polymorphism is not associated with aspirin responsiveness status in stable coronary artery disease in Tunisian patients. Genet Test Mol Biomarkers. 2011;15(7–8):513–6.

    Article  PubMed  CAS  Google Scholar 

  242. Clappers N, van Oijen MG, Sundaresan S, Brouwer MA, Te Morsche RH, Keuper W, et al. The C50T polymorphism of the cyclooxygenase-1 gene and the risk of thrombotic events during low-dose therapy with acetyl salicylic acid. Thromb Haemost. 2008;100(1):70–5 [Clinical Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  243. Chen WH, Lee PY, Ng W, Tse HF, Lau CP. Aspirin resistance is associated with a high incidence of myonecrosis after non-urgent percutaneous coronary intervention despite clopidogrel pretreatment. J Am Coll Cardiol. 2004;43(6):1122–6.

    Article  PubMed  CAS  Google Scholar 

  244. Lev EI, Patel RT, Maresh KJ, Guthikonda S, Granada J, DeLao T, et al. Aspirin and clopidogrel drug response in patients undergoing percutaneous coronary intervention: the role of dual drug resistance. J Am Coll Cardiol. 2006;47(1):27–33 [In Vitro].

    Article  PubMed  CAS  Google Scholar 

  245. Gonzalez-Conejero R, Rivera J, Corral J, Acuna C, Guerrero JA, Vicente V. Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure? Stroke. 2005;36(2):276–80 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  246. Bierend A, Rau T, Maas R, Schwedhelm E, Boger RH. P2Y12 polymorphisms and antiplatelet effects of aspirin in patients with coronary artery disease. Br J Clin Pharmacol. 2008;65(4):540–7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  247. Bernardo E, Angiolillo DJ, Ramirez C, Cavallari U, Trabetti E, Sabate M, et al. Lack of association between gene sequence variations of platelet membrane receptors and aspirin responsiveness detected by the PFA-100 system in patients with coronary artery disease. Platelets. 2006;17(8):586–90 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  248. Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharmacol. 2008;66(2):222–32 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  249. Gurbel PA, Antonino MJ, Tantry US. Recent developments in clopidogrel pharmacology and their relation to clinical outcomes. Expert Opin Drug Metab Toxicol. 2009;5(8):989–1004 [Review].

    Article  PubMed  CAS  Google Scholar 

  250. Farid NA, Kurihara A, Wrighton SA. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol. 2010;50(2):126–42 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  251. De Miguel A, Ibanez B, Badimon JJ. Clinical implications of clopidogrel resistance. Thromb Haemost. 2008;100(2):196–203 [Review].

    PubMed  Google Scholar 

  252. Farid NA, Payne CD, Small DS, Winters KJ, Ernest 2nd CS, Brandt JT, et al. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther. 2007;81(5):735–41 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  253. Gilard M, Arnaud B, Cornily JC, Le Gal G, Lacut K, Le Calvez G, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol. 2008;51(3):256–60 [Randomized Controlled Trial].

    Article  PubMed  CAS  Google Scholar 

  254. Siller-Matula JM, Jilma B, Schror K, Christ G, Huber K. Effect of proton pump inhibitors on clinical outcome in patients treated with clopidogrel: a systematic review and meta-analysis. J Thromb Haemost. 2010;8(12):2624–41 [Meta-Analysis Review].

    Article  PubMed  CAS  Google Scholar 

  255. Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345(7):494–502 [Clinical Trial Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  256. Bhatt DL, Fox KA, Hacke W, Berger PB, Black HR, Boden WE, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006;354(16):1706–17 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  257. Hankey GJ, Sudlow CL, Dunbabin DW. Thienopyridines or aspirin to prevent stroke and other serious vascular events in patients at high risk of vascular disease? A systematic review of the evidence from randomized trials. Stroke. 2000;31(7):1779–84 [Meta-Analysis Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  258. Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Jukema JW, Huisman MV. Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am Heart J. 2007;154(2):221–31 [Meta-Analysis Review].

    Article  PubMed  CAS  Google Scholar 

  259. Ellis KJ, Stouffer GA, McLeod HL, Lee CR. Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations. Pharmacogenomics. 2009;10(11):1799–817 [Review].

    Article  PubMed  CAS  Google Scholar 

  260. Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108(7):2244–7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  261. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–75 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  262. Collet JP, Hulot JS, Pena A, Villard E, Esteve JB, Silvain J, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009;373(9660):309–17 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  263. Mega JL, Simon T, Collet JP, Anderson JL, Antman EM, Bliden K, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with ­clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16):1821–30 [Meta-Analysis Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  264. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  265. Wallentin L, James S, Storey RF, Armstrong M, Barratt BJ, Horrow J, et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet. 2010;376(9749):1320–8 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  266. Pare G, Mehta SR, Yusuf S, Anand SS, Connolly SJ, Hirsh J, et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med. 2010;363(18):1704–14 [Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  267. Tiroch KA, Sibbing D, Koch W, Roosen-Runge T, Mehilli J, Schomig A, et al. Protective effect of the CYP2C19 *17 polymorphism with increased activation of clopidogrel on cardiovascular events. Am Heart J. 2010;160(3):506–12.

    Article  PubMed  CAS  Google Scholar 

  268. Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM, Taubert D. Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ. 2011;343:d4588 [Meta-Analysis Review].

    Article  PubMed  Google Scholar 

  269. Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849–57 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  270. Administration UFaD. Plavix (clopidogrel): reduced effectiveness in patients who are poor metabolizers of the drug. 2010. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm204256.htm. Cited 03/01/2012.

  271. Holmes Jr DR, Dehmer GJ, Kaul S, Leifer D, O’Gara PT, Stein CM. ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2010;56(4):321–41 [Consensus Development Conference Review].

    Article  PubMed  CAS  Google Scholar 

  272. Angiolillo DJ, Costa MA, Shoemaker SB, Desai B, Bernardo E, Suzuki Y, et al. Functional effects of high clopidogrel maintenance dosing in patients with inadequate platelet inhibition on standard dose treatment. Am J Cardiol. 2008;101(4):440–5 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  273. Aleil B, Jacquemin L, De Poli F, Zaehringer M, Collet JP, Montalescot G, et al. Clopidogrel 150 mg/day to overcome low responsiveness in patients undergoing elective percutaneous coronary intervention: results from the VASP-02 (Vasodilator-Stimulated Phosphoprotein-02) randomized study. JACC Cardiovasc Interv. 2008;1(6):631–8 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  274. Mega JL, Hochholzer W, Frelinger 3rd AL, Kluk MJ, Angiolillo DJ, Kereiakes DJ, et al. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA. 2011;306(20):2221–8 [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  275. Collet JP, Hulot JS, Anzaha G, Pena A, Chastre T, Caron C, et al. High doses of clopidogrel to overcome genetic resistance: the randomized crossover CLOVIS-2 (Clopidogrel and Response Variability Investigation Study 2). JACC Cardiovasc Interv. 2011;4(4):392–402 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  276. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–15 [Clinical Trial, Phase III Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  277. Pirmohamed M. Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol. 2006;62(5):509–11.

    Article  PubMed  Google Scholar 

  278. Petersen P, Boysen G, Godtfredsen J, Andersen ED, Andersen B. Placebo-controlled, randomized trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet. 1989;1(8631):175–9.

    Article  PubMed  CAS  Google Scholar 

  279. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. New Engl J M. 1990;323(22):1505–11.

    Google Scholar 

  280. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. EAFT (European Atrial Fibrillation Trial) Study Group. Lancet. 1993;342(8882):1255–62.

    Google Scholar 

  281. Cannegieter SC, Rosendaal FR, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. 1994;89(2):635–41.

    Article  PubMed  CAS  Google Scholar 

  282. Mok CK, Boey J, Wang R, Chan TK, Cheung KL, Lee PK, et al. Warfarin versus dipyridamole-aspirin and pentoxifylline-aspirin for the prevention of prosthetic heart valve thromboembolism: a prospective randomized clinical trial. Circulation. 1985;72(5):1059–63.

    Article  PubMed  CAS  Google Scholar 

  283. Effect of long-term oral anticoagulant treatment on mortality and cardiovascular morbidity after myocardial infarction. Anticoagulants in the Secondary Prevention of Events in Coronary Thrombosis (ASPECT) Research Group. Lancet. 1994;343(8896):499–503.

    Google Scholar 

  284. Wolf PA, Dawber TR, Thomas Jr HE, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology. 1978;28(10):973–7.

    Article  PubMed  CAS  Google Scholar 

  285. Watson T, Shantsila E, Lip GY. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet. 2009;373(9658):155–66.

    Article  PubMed  CAS  Google Scholar 

  286. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146(12):857–67 [Meta-Analysis].

    PubMed  Google Scholar 

  287. Yousef ZR, Tandy SC, Tudor V, Jishi F, Trent RJ, Watson DK, et al. Warfarin for non-rheumatic atrial fibrillation: five year experience in a district general hospital. Heart. 2004;90(11):1259–62.

    Article  PubMed  CAS  Google Scholar 

  288. Johnson CE, Lim WK, Workman BS. People aged over 75 in atrial fibrillation on warfarin: the rate of major hemorrhage and stroke in more than 500 patient-years of follow-up. J Am Geriatr Soc. 2005;53(4):655–9.

    Article  PubMed  Google Scholar 

  289. Aguilar MI, Hart R, Pearce LA. Oral anticoagulants versus antiplatelet therapy for preventing stroke in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2007;18(3):CD006186.

    Google Scholar 

  290. CYP2C9 allele nomenclature. Updated 02/05/1127/02/2011. Available from: http://www.cypalleles.ki.se/cyp2c9.htm.

  291. Palareti G, Legnani C. Warfarin withdrawal. Pharmacokinetic-pharmacodynamic considerations. Clin Pharmacokinet. 1996;30(4):300–13.

    Article  PubMed  CAS  Google Scholar 

  292. Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227–46.

    Article  PubMed  CAS  Google Scholar 

  293. Eble JN, West BD, Link KP. A comparison of the isomers of warfarin. Biochem Pharmacol. 1966;15(7):1003–6. doi:10.1016/0006-2952(66),90182-1.

    Article  CAS  Google Scholar 

  294. Jones DR, Miller GP. Assays and applications in warfarin metabolism: what we know, how we know it and what we need to know. Expert Opin Drug Metab Toxicol. 2011;7(7):857–74.

    Article  PubMed  CAS  Google Scholar 

  295. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol. 1992;5(1):54–9.

    Article  PubMed  CAS  Google Scholar 

  296. Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  297. Jones DR, Kim SY, Boysen G, Yun CH, Miller GP. Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin. Drug Metab Lett. 2010;4(4):213–9.

    Article  PubMed  CAS  Google Scholar 

  298. Zhang Z, Fasco MJ, Huang Z, Guengerich FP, Kaminsky LS. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos. 1995;23(12):1339–46.

    PubMed  CAS  Google Scholar 

  299. Otagiri M, Maruyama T, Imai T, Suenaga A, Imamura Y. A comparative study of the interaction of warfarin with human alpha 1-acid glycoprotein and human albumin. J Pharm Pharmacol. 1987;39(6):416–20.

    Article  PubMed  CAS  Google Scholar 

  300. Nakagawa T, Kishino S, Itoh S, Sugawara M, Miyazaki K. Differential binding of disopyramide and warfarin enantiomers to human alpha(1)-acid glycoprotein variants. Br J Clin Pharmacol. 2003;56(6):664–9.

    Article  PubMed  CAS  Google Scholar 

  301. Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J, Wadelius C, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet. 2007;121(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  302. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics. 1994;4(1):39–42.

    Article  PubMed  CAS  Google Scholar 

  303. Haining RL, Hunter AP, Veronese ME, Trager WF, Rettie AE. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys. 1996;333(2):447–58.

    Article  PubMed  CAS  Google Scholar 

  304. Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics. 1997;7(3):203–10.

    Article  PubMed  CAS  Google Scholar 

  305. Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717–9.

    Article  PubMed  CAS  Google Scholar 

  306. Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements – a systematic review and meta-analysis. Eur J Clin Pharmacol. 2009;65(4):365–75.

    Article  PubMed  CAS  Google Scholar 

  307. Moyer TP, O’Kane DJ, Baudhuin LM, Wiley CL, Fortini A, Fisher PK, et al. Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc. 2009;84(12):1079–94.

    Article  PubMed  CAS  Google Scholar 

  308. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet. 2005;14(13):1745–51.

    Article  PubMed  CAS  Google Scholar 

  309. Xie HG, Prasad HC, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev. 2002;54(10):1257–70.

    Article  PubMed  CAS  Google Scholar 

  310. Cho HJ, Sohn KH, Park HM, Lee KH, Choi B, Kim S, et al. Factors affecting the interindividual variability of warfarin dose requirement in adult Korean patients. Pharmacogenomics. 2007;8(4):329–37.

    Article  PubMed  CAS  Google Scholar 

  311. Miao L, Yang J, Huang C, Shen Z. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol. 2007;63(12):1135–41.

    Article  PubMed  CAS  Google Scholar 

  312. Obayashi K, Nakamura K, Kawana J, Ogata H, Hanada K, Kurabayashi M, et al. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther. 2006;80(2):169–78.

    Article  PubMed  CAS  Google Scholar 

  313. Cavallari LH, Langaee TY, Momary KM, Shapiro NL, Nutescu EA, Coty WA, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010;87(4):459–64.

    Article  PubMed  CAS  Google Scholar 

  314. Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol. 2001;52(4):447–50.

    Article  PubMed  CAS  Google Scholar 

  315. Limdi N, Goldstein J, Blaisdell J, Beasley T, Rivers C, Acton R. Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans. Per Med. 2007;4(2):157–69.

    Article  PubMed  CAS  Google Scholar 

  316. Momary KM, Shapiro NL, Viana MA, Nutescu EA, Helgason CM, Cavallari LH. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics. 2007;8(11):1535–44.

    Article  PubMed  CAS  Google Scholar 

  317. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.

    Article  PubMed  CAS  Google Scholar 

  318. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358(10):999–1008.

    Article  PubMed  CAS  Google Scholar 

  319. Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med. 2005;7(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  320. Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther. 2008;83(2):312–21.

    Article  PubMed  CAS  Google Scholar 

  321. Gebauer M. Synthesis and structure-activity relationships of novel warfarin derivatives. Bioorg Med Chem. 2007;15(6):2414–20.

    Article  PubMed  CAS  Google Scholar 

  322. Fasco MJ, Principe LM. R- and S-Warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. J Biol Chem. 1982;257(9):4894–901.

    PubMed  CAS  Google Scholar 

  323. Park BK. Warfarin: metabolism and mode of action. Biochem Pharmacol. 1988;37(1):19–27.

    Article  PubMed  CAS  Google Scholar 

  324. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427(6974):541–4.

    Article  PubMed  CAS  Google Scholar 

  325. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93.

    Article  PubMed  CAS  Google Scholar 

  326. D’Andrea G, D’Ambrosio R, Margaglione M. Oral anticoagulants: pharmacogenetics relationship between genetic and non-genetic factors. Blood Rev. 2008;22(3):127–40.

    Article  PubMed  CAS  Google Scholar 

  327. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.

    Article  PubMed  CAS  Google Scholar 

  328. Yang L, Ge W, Yu F, Zhu H. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement–a systematic review and meta analysis. Thromb Res. 2010;125(4):e159–66.

    Article  PubMed  CAS  Google Scholar 

  329. Limdi NA, Arnett DK, Goldstein JA, Beasley TM, McGwin G, Adler BK, et al. Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics. 2008;9(5):511–26.

    Article  PubMed  CAS  Google Scholar 

  330. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J. 2005;5(4):262–70.

    Article  PubMed  CAS  Google Scholar 

  331. Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadee W. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood. 2008;112(4):1013–21.

    Article  PubMed  CAS  Google Scholar 

  332. Kurnik D, Loebstein R, Halkin H, Gak E, Almog S. 10 years of oral anticoagulant pharmacogenomics: what difference will it make? A critical appraisal. Pharmacogenomics. 2009;10(12):1955–65.

    Article  PubMed  CAS  Google Scholar 

  333. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9.

    Article  PubMed  CAS  Google Scholar 

  334. Li C, Schwarz UI, Ritchie MD, Roden DM, Stein CM, Kurnik D. Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy. Blood. 2009;113(17):3925–30.

    Article  PubMed  CAS  Google Scholar 

  335. Luxembourg B, Schneider K, Sittinger K, Toennes SW, Seifried E, Lindhoff-Last E, et al. Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy. Thromb Haemost. 2011;105(1):169–80.

    Article  PubMed  CAS  Google Scholar 

  336. Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM, et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther. 2007;81(2):185–93.

    Article  PubMed  CAS  Google Scholar 

  337. Schelleman H, Chen Z, Kealey C, Whitehead AS, Christie J, Price M, et al. Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther. 2007;81(5):742–7.

    Article  PubMed  CAS  Google Scholar 

  338. Reitsma PH, van der Heijden JF, Groot AP, Rosendaal FR, Buller HR. A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS Med. 2005;2(10):e312.

    Article  PubMed  CAS  Google Scholar 

  339. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111(8):4106–12.

    Article  PubMed  CAS  Google Scholar 

  340. Liang R, Wang C, Zhao H, Huang J, Hu D, Sun Y. Influence of CYP4F2 genotype on warfarin dose requirement – a systematic review and meta-analysis. Thromb Res. doi:10.1016/j.thromres.2011.11.043.

  341. Kohnke H, Sorlin K, Granath G, Wadelius M. Warfarin dose related to apolipoprotein E (APOE) genotype. Eur J Clin Pharmacol. 2005;61(5–6):381–8.

    Article  PubMed  CAS  Google Scholar 

  342. Kohnke H, Scordo MG, Pengo V, Padrini R, Wadelius M. Apolipoprotein E (APOE) and warfarin dosing in an Italian population. Eur J Clin Pharmacol. 2005;61(10):781–3.

    Article  PubMed  Google Scholar 

  343. Wallin R, Hutson SM, Cain D, Sweatt A, Sane DC. A molecular mechanism for genetic warfarin resistance in the rat. FASEB J. 2001;15(13):2542–4.

    PubMed  CAS  Google Scholar 

  344. Wallin R, Hutson S. Vitamin K-dependent carboxylation Evidence that at least two microsomal dehydrogenases reduce vitamin K1 to support carboxylation. J Biol Chem. 1982;257(4):1583–6.

    PubMed  CAS  Google Scholar 

  345. Shikata E, Ieiri I, Ishiguro S, Aono H, Inoue K, Koide T, et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood. 2004;103(7):2630–5.

    Article  PubMed  CAS  Google Scholar 

  346. Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, et al. Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther. 2006;79(4):291–302.

    Article  PubMed  CAS  Google Scholar 

  347. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008;112(4):1022–7.

    Article  PubMed  CAS  Google Scholar 

  348. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5(3):e1000433.

    Article  PubMed  CAS  Google Scholar 

  349. Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S, Kamatani N, et al. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet. 2010;19(23):4735–44.

    Article  PubMed  CAS  Google Scholar 

  350. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.

    Article  PubMed  CAS  Google Scholar 

  351. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.

    Article  PubMed  Google Scholar 

  352. Michaud V, Vanier MC, Brouillette D, Roy D, Verret L, Noel N, et al. Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients. Clin Pharmacol Ther. 2008;83(5):740–8.

    Article  PubMed  CAS  Google Scholar 

  353. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113(4):784–92.

    Article  PubMed  CAS  Google Scholar 

  354. Hillman MA, Wilke RA, Yale SH, Vidaillet HJ, Caldwell MD, Glurich I, et al. A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res. 2005;3(3):137–45.

    Article  PubMed  CAS  Google Scholar 

  355. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116(22):2563–70.

    Article  PubMed  CAS  Google Scholar 

  356. Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2008;83(3):460–70.

    Article  PubMed  CAS  Google Scholar 

  357. Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ, et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics. 2009;19(3):226–34.

    Article  PubMed  CAS  Google Scholar 

  358. Epstein RS, Moyer TP, Aubert RE, O Kane DJ, Xia F, Verbrugge RR, et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol. 2010;55(25):2804–12.

    Article  PubMed  CAS  Google Scholar 

  359. Pirmohamed M. Acceptance of biomarker-based tests for application in clinical practice: criteria and obstacles. Clin Pharmacol Ther. 2010;88(6):862–6 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren E. Walker B.Sc. (Hons), MBChB (Hons), MRCP (UK) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Walker, L.E., Stewart, A., Pirmohamed, M. (2013). Stroke Pharmacogenetics. In: Sharma, P., Meschia, J. (eds) Stroke Genetics. Springer, London. https://doi.org/10.1007/978-0-85729-209-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-209-4_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-208-7

  • Online ISBN: 978-0-85729-209-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics