Skip to main content
Log in

Warfarin dose related to apolipoprotein E (APOE) genotype

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Warfarin is an anticoagulant which acts through interference with the recycling of vitamin K in the liver, leading to reduced activation of several clotting factors. Apolipoprotein E plays a central role in the uptake of the lipid-soluble vitamin K. The apolipoprotein E (APOE) alleles E2, E3 and E4 encode the three major isoforms of apolipoprotein E. The aim of this project was to evaluate whether variation in the APOE gene influences warfarin dose.

Methods

We genotyped APOE in 183 warfarin-treated patients. Information about warfarin dose, prothrombin time, age, gender, body weight, treatment indication and duration, other diseases and concurrent medication was taken from the patients’ medical records. Cytochrome P450 2C9 genotyping had been performed previously, and patients were stratified according to CYP2C9 genotype.

Results

Patients homozygous for APOE*E4 tended to receive higher warfarin doses than others. Among CYP2C9 extensive metabolisers, APOE*E4 homozygous patients received significantly higher warfarin doses than patients with one or no E4 alleles; 56.9 compared with 34.3 and 34.6 mg/week, (Bonferroni corrected P=0.008 and 0.007, respectively). APOE genotype explains 6% of warfarin dose variance among CYP2C9 extensive metabolisers (analysis of variance, P=0.009).

Conclusion

Previous studies have shown that individuals carrying the APOE*E4 allele have a faster uptake of lipoproteins into the liver and lower levels of circulating vitamin K than others. It is therefore plausible that patients carrying E4 alleles have an enhanced uptake of vitamin K into the liver and require higher doses of warfarin to compensate for this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takahashi H, Echizen H (2001) Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 40:587–603

    CAS  PubMed  Google Scholar 

  2. Hirsh J, Dalen J, Anderson D, Poller L, Bussey H, Ansell J, et al. (1998) Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 114:445S-469S

    CAS  PubMed  Google Scholar 

  3. Landefeld C, Beyth R (1993) Anticoagulant-related bleeding: clinical epidemiology, prediction and prevention. Am J Med 95:315–328; doi:10.1016/0002-9343(93)90285-W

    Google Scholar 

  4. Loebstein R, Yonath H, Peleg D, Almog S, Rotenberg M, Lubetsky A et al (2001) Interindividual variability in sensitivity to warfarin-nature or nurture? Clin Pharmacol Ther 70:159–164; doi:10.1067/mcp.2001.117444

    Google Scholar 

  5. Wadelius M, Sorlin K, Wallerman O, Karlsson J, Yue QY, Magnusson PK, Wadelius C, Melhus H (2004) Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 4:40–48; doi:10.1038/sj.tpj.6500220

    Google Scholar 

  6. Hummers-Pradier E, Hess S, Adham IM, Papke T, Pieske B, Kochen MM (2003) Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 59:213–219; doi:10.1007/s00228-003-0580-8

    Google Scholar 

  7. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, Gelboin HV, Gonzalez FJ, Trager WF (1992) Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 5:54–59

    Article  CAS  PubMed  Google Scholar 

  8. Kaminsky L, Zhang Z (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73:67–74

    Google Scholar 

  9. Grossman SJ, Herold EG, Drey JM, Alberts DW, Umbenhauer DR, Patrick DH, Nicoll-Griffith D, Chauret N, Yergey JA (1993) CYP1A1 specificity of Verlukast epoxidation in mice, rats, rhesus monkeys, and humans. Drug Metab Dispos 21:1029–1036

    CAS  PubMed  Google Scholar 

  10. Zhang Z, Fasco MJ, Huang Z, Guengerich FP, Kaminsky LS (1995) Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos 23:1339–1346

    CAS  PubMed  Google Scholar 

  11. Kaminsky LS, de Morais SM, Faletto MB, Dunbar DA, Goldstein JA (1993) Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 43:234–239

    CAS  PubMed  Google Scholar 

  12. Huang W, Lin YS, McConn DJ 2nd, Calamia JC, Totah RA, Isoherranen N, Glodowski M, Thummel KE (2004) Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 32:1434–1445; doi:10.1124/dmd.104.001313

    Google Scholar 

  13. Haining RL, Hunter AP, Veronese ME, Trager WF, Rettie AE (1996) Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 333:447–458; doi.org/10.1006/abbi.1996.0414

    Article  CAS  PubMed  Google Scholar 

  14. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42

    CAS  PubMed  Google Scholar 

  15. Takahashi H, Echizen H (2003) Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J 3:202–214; doi:10.1038/sj.tpj.6500182

    Google Scholar 

  16. Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ, Idle JR (1995) Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 5:389–392

    CAS  PubMed  Google Scholar 

  17. Steward DJ, Haining RL, Henne KR, Davis G, Rushmore TH, Trager WF, Rettie AE (1997) Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7:361–367

    CAS  PubMed  Google Scholar 

  18. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72:702–710; doi.org/10.1067/mcp.2002.129321

    Article  CAS  PubMed  Google Scholar 

  19. Margaglione M, Colaizzo D, D’Andrea G, Brancaccio V, Ciampa A, Grandone E et al (2000) Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 84:775–778

    CAS  PubMed  Google Scholar 

  20. Higashi M, Veenstra D, Kondo L, Wittkowsky A, Srinouanprachanh S, Farin F et al (2002) Association between CYP 2C9 genetic variants and anticoagulation-related outcomes during warfarin treatment. JAMA 287:1690–1698

    Article  CAS  PubMed  Google Scholar 

  21. Aithal GP, Day CP, Kesteven PJ, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719; doi.org/10.1016/S0140-6736(98)04474-2

    Article  CAS  PubMed  Google Scholar 

  22. Ogg MS, Brennan P, Meade T, Humphries SE (1999) CYP2C9*3 allelic variant and bleeding complications. Lancet 354:1124

    Article  CAS  Google Scholar 

  23. Saupe J, Shearer MJ, Kohlmeier M (1993) Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am J Clin Nutr 58:204–208

    CAS  PubMed  Google Scholar 

  24. Chappell DA, Medh JD (1998) Receptor-mediated mechanisms of lipoprotein remnant catabolism. Prog Lipid Res 37:393–422; doi:10.1016/S0163-7827(98)00017-4

    Google Scholar 

  25. Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 61:1–24; doi.org/10.1016/S0361-9230(03)00067-4

    Article  CAS  PubMed  Google Scholar 

  26. Ewbank DC (2004) The APOE gene and differences in life expectancy in Europe. J Gerontol A Biol Sci Med Sci 59:16–20

    PubMed  Google Scholar 

  27. Eggertsen G, Tegelman R, Ericsson S, Angelin B, Berglund L (1993) Apolipoprotein E polymorphism in a healthy Swedish population: variation of allele frequency with age and relation to serum lipid concentrations. Clin Chem 39:2125–2129

    CAS  PubMed  Google Scholar 

  28. Sadler JE (2004) Medicine: K is for koagulation. Nature 427:493–494; doi:10.1038/427493a

    Google Scholar 

  29. Rost S, Fregin A, Koch D, Compes M, Muller CR, Oldenburg J (2004) Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 126:546–549; doi:10.1111/j.1365-2141.2004.05071.x

    Google Scholar 

  30. Linder MW (2001) Genetic mechanisms for hypersensitivity and resistance to the anticoagulant Warfarin. Clin Chim Acta 308:9–15; doi.org/10.1016/S0009-8981(01)00420-X

    Article  CAS  PubMed  Google Scholar 

  31. Lubetsky A, Dekel-Stern E, Chetrit A, Lubin F, Halkin H (1999) Vitamin K intake and sensitivity to warfarin in patients consuming regular diets. Thromb Haemost 81:396–399

    CAS  PubMed  Google Scholar 

  32. Wells P, Holbrook A, Crowther N, Hirsh J (1994) Interactions of warfarin with drugs and food. Ann Intern Med 121:676–683

    CAS  PubMed  Google Scholar 

  33. Berkner KL, Runge KW (2004) The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J Thromb Haemost 2:2118-2132

    Article  CAS  PubMed  Google Scholar 

  34. Kohlmeier M, Salomon A, Saupe J, Shearer MJ (1996) Transport of vitamin K to bone in humans. J Nutr 126:1192S–1196S

    CAS  PubMed  Google Scholar 

  35. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362

    CAS  PubMed  Google Scholar 

  36. Koch W, Ehrenhaft A, Griesser K, Pfeufer A, Muller J, Schomig A, Kastrati A (2002) TaqMan systems for genotyping of disease-related polymorphisms present in the gene encoding apolipoprotein E. Clin Chem Lab Med 40:1123–1131

    Article  CAS  PubMed  Google Scholar 

  37. Hickmott H, Wynne H, Kamali F (2003) The effect of simvastatin co-medication on warfarin anticoagulation response and dose requirements. Thromb Haemost 89: 949-50

    CAS  PubMed  Google Scholar 

  38. Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL (2004) Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 91:87–94; doi:10.1160/TH03-06-0379

    Google Scholar 

  39. Gregg RE, Zech LA, Schaefer EJ, Stark D, Wilson D, Brewer HB Jr (1986) Abnormal in vivo metabolism of apolipoprotein E4 in humans. J Clin Invest 78:815–821

    CAS  PubMed  Google Scholar 

  40. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:537–541; doi:10.1038/nature02214

    Google Scholar 

  41. D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105:645–649; doi:10.1182/blood-2004-06-2111

    Google Scholar 

  42. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, Wallerman O, Melhus H, Wadelius C, Bentley D, Deloukas P (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J (doi:10.1038/sj.tpj.6500313)

    Google Scholar 

Download references

Acknowledgements

We thank Professor Martin Kohlmeier, University of North Carolina for the idea to study APOE. We are indebted to Qun-Ying Yue and Håkan Melhus for initiating patient collection, and to all nurses, doctors and patients who took part. This study was funded by the Swedish Society of Medicine, the Swedish Foundation for Strategic Research, the Swedish Heart and Lung Foundation, Tore Nilson foundation, Federation of County Councils and Clinical Research Support (ALF) at Uppsala University. The sponsors had no role in study design, data collection, data analysis, data interpretation or writing of the report. The experiments comply with the current laws of Sweden. Uppsala Research Ethics Committee approved the study, No. 00-119. Competing interests: none declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mia Wadelius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohnke, H., Sörlin, K., Granath, G. et al. Warfarin dose related to apolipoprotein E (APOE) genotype. Eur J Clin Pharmacol 61, 381–388 (2005). https://doi.org/10.1007/s00228-005-0936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0936-3

Keywords

Navigation