Skip to main content

Genetic Control of Meat Quality Traits

  • Chapter
Meat Biotechnology

Meat was originally produced from non-specialized animals that were used for a variety of purposes, in addition to being a source of food. However, selective breeding has resulted in “improved” breeds of cattle that are now used to produce either milk or beef, and specialized chicken lines that produce eggs or meat. These improved breeds are very productive under appropriate management systems. The selection methods used to create these specialized breeds were based on easily measured phenotypic variations, such as growth rate or physical size. Improvement in the desired trait was achieved by breeding directly from animals displaying the desired phenotype. However, more recently sophisticated genetic models have been developed using statistical approaches that consider phenotypic information collected, not only from individual animals but also from their parents, sibs, and progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, L., & Georges, M. (2004). Domestic animal genomic: deciphering the genetics of complex traits. Nature Reviews Genetics, 5, 202–212.

    Article  CAS  Google Scholar 

  • Archibald, A. L., Haley, C. S., Brown, J. F., Couperwhite, S., McQueen, H. A., Nicholson, D., et al. (1995). The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome, 6, 157–175.

    Article  CAS  Google Scholar 

  • Barb, C. R., Hausman, J. H., & Hoseknechtm, K. L. (2001). Biology of leptin in the pig. Domestic Animal Endocrinology, 21, 297–317.

    Article  CAS  Google Scholar 

  • Barendse, W. (2002a). DNA markers for meat tenderness. Patent WO02064820.

    Google Scholar 

  • Barendse, W. (2002b). Assessing lipid metabolism. Patent WO9923248.

    Google Scholar 

  • Barendse, W., Bunch, R. J., & Harrison, B. E. (2005). The leptin C73T missense mutation is not associated with marbling and fatness traits in a large gene mapping experiment in Australian cattle. Animal Genetics, 36, 71–93.

    Article  CAS  Google Scholar 

  • Barendse, W., Vaiman, D., Kemp, S., Sugimoto, Y., Armitage, S., Williams, J. L., et al. (1997). A medium density genetic linkage map of the bovine genome. Mammalian Genome, 8, 21–28.

    Article  CAS  Google Scholar 

  • Bellmann, O., Wegner, J., Teuscher, F., Schneider, F., & Ender, K. (2004). Muscle characteristics and corresponding hormone concentrations in different types of cattle. Livestock Production Science, 85, 45–57.

    Article  Google Scholar 

  • Berghmans, S., Segers, K., Shay, T., Georges, M., Cockett, N., & Charlier, C. (2001). Breakpoint mapping positions the callipyge gene within a 285 kilobase chromosome segment containing the GTL-2 gene. Mammalian Genome, 12, 183–185.

    Google Scholar 

  • Bishop, M. D., Kappes, S. M., Keele, J. W., Stone, R. T., Sunden, S. L. F, Hawkins, G. A., et al. (1994). A genetic linkage map for cattle. Genetics, 136, 619–639.

    CAS  Google Scholar 

  • Blott, S. C., Williams, J. L., & Haley, C. S. (1999). Discriminating among between cattle breeds using genetic markers. Heredity, 6, 613–619.

    Article  Google Scholar 

  • Bouley, J., Meunier, B., Chambon, C., DeSmet, S., Hocquette, J. F., & Picard, B. (2005). Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics, 5, 490–500.

    Google Scholar 

  • Buchanan, F. C., Fitzsimmons, C. J., Van Kessel, A. G., Thue, T. D., Winkelman-Sim, D. C., & Schmutz, S. M. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetic Selection Evolution, 34, 105–116.

    Google Scholar 

  • Buchanan, F. C., Thue, T. D., Yu, P., & Winkelman-Sim, D. C. (2005). Single nucleotide polymorphisms in the corticotrophin-releasing hormone and pro-opiomelancortin genes are associated with growth and carcass yield in beef cattle. Animal Genetics, 36, 127–131.

    Article  CAS  Google Scholar 

  • Burrow, H. M., Moore, S. S., Johnston, D. J., Barendse, W., & Bindon, B. M. (2001). Australian Journal of Experimental Agriculture, 41, 893–919.

    Google Scholar 

  • Casas, E., Keele, J. W., Shackelford, S. D., Koohmaraie, M., & Stone, R. T. (2004). Identification of quantitative trait loci for growth and carcass composition in cattle. Animal Genetics,35, 2–6.

    Article  CAS  Google Scholar 

  • Casas, E., Shackelford, S. D., Keele, J. W., Koohmaraie, M., Smith, T. P. L., & Stone, R. T. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. Journal of Animal Science,81, 2976–2983.

    CAS  Google Scholar 

  • Casas, E., Shackelford, S. D., Keele, J. W., Stone, R. T., Kappes, S. M., & Koohmaraie, M. (2000). Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. Journal of Animal Science, 78, 560–569.

    CAS  Google Scholar 

  • Casas, E., Stone, R. T., Keele, J. W., Shackelford, S. D., Kappes, S. M., & Koohmaraie, M. (2001). A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. Journal of Animal Science, 79, 854–860.

    CAS  Google Scholar 

  • Casas, S., Smith, S. J., Zheng, Y.-W., Myers, H. M., Lear, S. R., Sande, E.,et al.. (1998). Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proceedings of the National Academy of Sciences of the United States of America, 95, 13018–13023.

    Article  Google Scholar 

  • Casser-Malek, I., Sundre, K., Listrat, A., Ueda, Y., Jurie, C., Briand, Y., et al. (2003). Integrated approach combining genetics genomics and muscle biology to manage beef quality. British Society of Animal Science York.

    Google Scholar 

  • Charlier, C., Coppieters, W., Farnir, F., Grobet, L., Leroy, P. L., Michaux, C.,et al. (1995). The mh gene causing double-muscling in cattle maps to bovine Chromosome 2. Mammalian Genome, 6, 788–792.

    Article  CAS  Google Scholar 

  • Chowdhary, B. P., Fronicke, L., Gustavsson, I., & Scherthan, H, (1996). Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mammalian Genome, 7, 297–302.

    Article  CAS  Google Scholar 

  • Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., et al. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38, 813–818.

    Article  CAS  Google Scholar 

  • Coppieters, W., Riquet, J., Arranz, J.-J., Berzi, P., Cambisano, N., Grisart, B.,et al. (1998). A QTL with major effect on milk yield and composition maps to bovine Chromosome 14. Mammalian Genome, 9, 540–544.

    Article  CAS  Google Scholar 

  • Crisà, A., Marchitelli, C., Savarese, M. C., & Valentini, A. (2003). Sequence analysis of myostatin promoter in cattle. Cytogenetics Genome Research, 102, 48–52.

    Article  CAS  Google Scholar 

  • D’Andrea, M., Fidotti, M., & Pilla, F. (2005). Differences in MC4R mRNA levels between Casertana and large white pig breeds. Italian Journal of Animal Science, 4 (Suppl. 2), 94–96.

    Google Scholar 

  • de Koning, D. J., Janss, L. L. G., Rattink, A. P., van Oers, P. A. M., de Vries, B. J., Groenen, M. A. M.,et al. (1999). Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (sus scrofa). Genetics, 152, 1679–1690.

    Google Scholar 

  • de Koning, D. J., Schulman, N. F., Elo, K., Moisio, S., Kinos, R., et al. (2001). Mapping of multiple quantitative trait loci by simple regression in half-sib designs. Journal of Animal Science, 79, 616–622.

    Google Scholar 

  • Dekkers, J. C. M. (2004). Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science, 82 (E. Suppl.), E313–E328.

    Google Scholar 

  • Dorroch, U., Goldammer, T., Brunner, R. M., Kata, S. R., Kühn, C., Womack, J. E., et al. (2001). Isolation and characterization of hepatic and intestinal expressed sequence tags potentially involved in trait differentiation between cows of different metabolic type. Mammalian Genome, 12, 528–537.

    Article  CAS  Google Scholar 

  • Everts-van der Wind, A., Larkin, D. M., Green, C. A., Elliott, J. S., Olmstead, C. A., Chiu, R., Schein, J. E., Marra, M. A., Womack, J. E. & Lewin, H. A. (2005). A high resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution. Proceedings of the National Academy of Sciences USA, 102, 18526–18531.

    Article  CAS  Google Scholar 

  • Fahrenkrug, S. C., Freking, B. A., Rexroad III, C. A., Leymaster, K. A., Kappes, S. M., & Smith, T. P. L. (2000). Comparative mapping of the CLPG locus. Mammalian Genome, 11, 871–876.

    Article  CAS  Google Scholar 

  • Fernando, R. L., & Grossman, M. (1989). Marker-assisted selection using best linear unbiased prediction. Genetics, Selection, Evolution, 21, 467–477.

    Article  Google Scholar 

  • Flint, J., & Mott, R. (2001). Finding the molecular basis of quantitative traits: Successes and pitfalls. Nature Reviews Genetics, 2, 437–445.

    Article  CAS  Google Scholar 

  • Freking, B. A., Murphy, S. K., Wylie, A. A., Rhodes, S. J., Keele, J. W., Leymaster, et al. (2002). Identification of the single base change causing the callipyge muscular hypertrophy phenotype, the only known example of polar over dominance in mammals. Genome Research, 12,1496–1506.

    Google Scholar 

  • Fujii, J., Otsu, K., Zorzato, F., De Leon, S., Khanna, V. K., Weiler, J. E., et al. (1991). Identification of a mutation in the porcine ryanodine receptor that is associated with malignant hypertemia. Science, 253, 448–451.

    Google Scholar 

  • Georges, M., Lathrop, M., Hilbert, P., Marcotte, A., Schwers, A., Swillens, S.,et al. 1990. On the use of DNA fingerprints for linkage studies in cattle. Genomics, 6, 461–474.

    Article  CAS  Google Scholar 

  • Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A. T.et al. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics, 139, 907–920.

    CAS  Google Scholar 

  • Gianola, D., & Fernando, R. L. (1986). Journal Animal Science, 63, 217–244.

    Google Scholar 

  • Gianola, D., Ødegård, J., Heringstad, B., Klemetsdal, G., Sorensen, D., Madsen, P.,et al. (2004). Mixture model for inferring susceptibility to mastitis in dairy cattle: A procedure for likelihood-based inference. Genetics, Selection, Evolution. 36, 3–27.

    Article  Google Scholar 

  • Gilbert, R. O., Rebhun, C. A., Kim, C. A., Kehrli, M. E. Jr., Shuster, D. E., & Achermann, M. R. (1993). Clinical manifestation of leukocyte adhesion deficiency in cattle: 14 cases (1977–1991). Journal of American Veterinary Medical Association, 202, 445–449.

    CAS  Google Scholar 

  • Goldammer, T., Dorroch, U., Brunner, R. M., Kata, S. R., Womack, J. E., & Schwerin, M. (2002). Identification and chromosome assignment of 23 genes expressed in meat and dairy cattle. Chromosome Research, 10, 411–418.

    Article  CAS  Google Scholar 

  • Gregory, S. G., Sekhon, M., Schein, J., Zhao, S., Osoegawa, K., Scott, C. E., et al. (2002). A physical map of the mouse genome. Nature, 418, 743–750.

    Article  CAS  Google Scholar 

  • Grisart, B., Farnir, F., Karim, L., Cambisano, N., Kim, J.-J., Kvasz, A., et al. (2004). Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America, 101, 2398–2403.

    Article  CAS  Google Scholar 

  • Grobet, L., Martin, L. J. R., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J.,et al. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71–74.

    Article  CAS  Google Scholar 

  • Gutiérrez-Gil, B., Wiener, P., Nute, G. R., Gill, J. L., Wood, J. D. & Williams, J. L., (2007). Detection of Quantitative Trait Loci for Meat Quality Traits in Cattle. Animal Genetics, 39, 51–61.

    Article  Google Scholar 

  • Hayes, H. (1995). Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenetics and Cell Genetics, 71, 168–174.

    Article  CAS  Google Scholar 

  • Henderson, C. R. (1984). Applications of linear models in animal breeding. Ontario, ON, Canada: University of Guelph.

    Google Scholar 

  • Huston, R. D., Cameron, N. D., & Rance, K. A. (2004). A melanocortin-4 receptor (MC4R) polymorphism is associated with performance traits in divergently selected large white pig populations. Animal Genetics, 35, 386–390.

    Article  CAS  Google Scholar 

  • Ihara, N., Takasuga, A., Mizoshita, K., Takeda, H., Sugimoto, M., Mizoguchi, Y.,et al. (2004). A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Research, 14, 1987–1998.

    Article  CAS  Google Scholar 

  • International Chicken Genome Sequencing Consortium. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution, Nature, 432, 695–716.

    Article  CAS  Google Scholar 

  • International HapMap Consortium. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851–861.

    Article  CAS  Google Scholar 

  • Itoh, T., Watanabe, T., Ihara, N., Mariani, P., Beattie, C. W., Sugimoto, Y., et al. (2005). A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics, 85, 413–424.

    Article  CAS  Google Scholar 

  • Jann, O. C., Aerts, J., Jones, M., Hastings, N., Law, A., McKay, S., et al. (2006). A second generation radiation hybrid map to aid the assembly of the bovine genome sequence. BMC Genomics, 7, 283.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Hypervariable ’minisatellite’ regions in human DNA. Nature, 314, 67–73.

    Article  CAS  Google Scholar 

  • Jiang, Y. L., Li, N., Du, L. X., & Wu, C. X. (2002). Relationship of T–${>}$A mutation in the promoter region of myostatin gene with growth traits in swine. Yi Chuan Xue Bao, 29, 413–416.

    CAS  Google Scholar 

  • Jiang, Z.-H., & Gibson, J. P. (1999). Genetics polymorphism in the leptin gene and their association with fatness in four pig breeds. Mammalian Genome, 10, 191–193.

    Article  CAS  Google Scholar 

  • Kambadur, R., Sharma, M., Smith, T. P. L., & Bass, J. J. (1997). Mutations in myostatin (GDF-8) in double muscled Belgian Blue and Piedmontese cattle. Genome Research, 7,910–915.

    Google Scholar 

  • Kappes, S. S., Keele, J. W., Stone, R. T., McGraw, R. A., Sonstegard, T. S., Smith, T. P.,et al. (1997). A second-generation linkage map of the bovine genome. Genome Research, 7,235–249.

    Google Scholar 

  • Kashi, Y., Hallerman, E., & Soller, M. (1990). Marker-assisted selection of candidate bulls for progeny testing programs. Animal Production, 51, 63–74.

    Google Scholar 

  • Keele, J. W., Shackelford, S. D., Kappes, S. M., Koohmaraie, M., & Stone, R. T. (1999). A region on bovine chromosome 15 influences beef longissimus tenderness in steers. Journal of Animal Science, 77, 1364–1371.

    CAS  Google Scholar 

  • Kennes, Y. M., Murphy, B. D., Pothier, F., & Palin, M.-F. (2001). Characterization of swine leptin (LEP) polymorphisms and their association with production traits. Animal Genetics, 32,215–218.

    Article  CAS  Google Scholar 

  • Kim, K. S., Larsen, N., Short, T., Plastow, G., & Rothschild, M. F. (2000). A missense variant of porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome, 11, 131–135.

    Article  CAS  Google Scholar 

  • Kim, K. S., Reecy, J. M., Hsu, W. H., Anderson, L. L., & Rothschild. (2004). Functional and phylogenetic analyses of a melanocortin-4 receptor mutation in domestic pigs. Domestic Animal Endocrinology, 26, 75–86.

    Google Scholar 

  • Knott, S. A., Elsen, J. M., & Haley, C. S. (1996). Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theoretical Applied Genetics, 93, 71–80.

    Article  CAS  Google Scholar 

  • Koohmaraie, M., Killefer, J., Bishop, M. D., Shackelford, S. D., Wheeler, T. L., & Arbona, J. R. (1995). Calpastatin-based method for predicting meat tenderness. In A. Ouali, D. Demeyer, & F. Smulders (Eds.), Expression of tissue proteinases and regulation of protein degradation as related to meat quality (pp. 395–410). Utrecht, The Netherlands: ECCEAMST.

    Google Scholar 

  • Lagonigro, R., Wiener, P., Pilla, F., Woolliams, J. A., & Williams, J. L. (2003). A mutation in coding region of the bovine leptin gene associated with feed intake. Animal Genetics, 34,371–374.

    Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 40, 9860–9921.

    Google Scholar 

  • Liang, P., & Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257, 967–971.

    Article  CAS  Google Scholar 

  • Liefers, S. C., Veerkamp, R. F., Te Pas, M. F., Chilliard, Y., & Van der Lende, T. (2005). Genetics and physiology of leptin in periparturient dairy cows. Domestic Animal Endocrinology, 29, 227–238.

    Google Scholar 

  • Lin, C. S., & Hsu, C. W. (2005). Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. Journal of Animal Science, 83, 2075–2086.

    CAS  Google Scholar 

  • MacLennan, D. H., Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Lai, F. A.,et al. (1989). Cloning and localization of the human calcium release channel (ryanodine receptor) gene to the proximal long arm (cen-q13.2) of human chromosome 19. (Abstract) American Journal of Human Genetics, 45 (Suppl.), A205.

    Google Scholar 

  • MacNeil, M. D., & Grosz, M. D. (2002). Genome-wide scans for QTL affecting carcass traits in Hereford x composite double backcross populations. Journal of Animal Science, 80,2316–2324.

    Google Scholar 

  • MacNeil, M. D., Miller, R. K., & Grosz, M. D. (2003). Genome-wide scan for quantitative traits loci affecting palatability traits of beef. Plant and Animal Genomes XI Conference, San Diego, USA.

    Google Scholar 

  • Malek, M., Dekkers, J. C. M., Lee, H. K., Baas, T. J., Prusa, K., Huff-Lonergan, E., et al. (2001). A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mammalian Genome, 12, 637–645.

    Article  CAS  Google Scholar 

  • McCarthy, L. C. (1996). Whole genome radiation hybrid mapping. Trend in Genetics, 12,491–493.

    Google Scholar 

  • McPherron, A. C., Lawler, A. M., & Lee, S.-J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-b superfamily member. Nature, 387, 83–90.

    Article  CAS  Google Scholar 

  • Ménissier, F. 1982. General survey of the effect of double muscling on cattle performance. In J. W. B. King & F. Ménissier (Eds.), Muscle hypertrophy of genetic origin and its use to improve beef production (pp. 437–449). London: Martinus Nijhoff Publishers.

    Google Scholar 

  • Meuwissen, T. H. E. (1998). Optimizing pure line breeding strategies utilizing reproductive technologies. Journal of Dairy Science, 81 (Suppl. 2), 47–54.

    Article  CAS  Google Scholar 

  • Meuwissen, T. H. E., Hayes, B. J., & Goddar, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.

    CAS  Google Scholar 

  • Nagamine, Y., Haley, C. S., Sewalem, A., & Visscher, P. M. (2003). Quantitative trait loci variation for growth and obesity between and within lines of pigs (sus scrofa). Genetics, 164,629–635.

    Google Scholar 

  • Neimann-Sorensen, A., & Robertson, A. (1961). The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agricultural Scandinavia, 11, 163–196.

    Article  Google Scholar 

  • Nezer, C., Moreau, L., Brouwers, B., Coppieters, A., Detilleux, J., Hanset, R.,et al. (1999). An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics, 21, 155–156.

    Article  CAS  Google Scholar 

  • Nonneman, D., Kappes, S. M., & Koohmaraie, M. (1999). Rapid communication: A polymorphic microsatellite in the promoter region of the bovine calpastatin gene. Journal of Animal Science, 77, 3114–3115.

    CAS  Google Scholar 

  • Page, B. T., Casas, E., Heaton, M. P., Cullen, N. G., Hyndman, D. L., Morris, C. A., et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. Journal of Animal Science, 80, 3077–3085.

    CAS  Google Scholar 

  • Ponsuksili, S., Murani, E., Walz, C., Schwerin, M., & Wimmers, K. (2007). Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: Insight into pathways of metabolic regulation. Physiol Genomics, 29, 267–279.

    Article  CAS  Google Scholar 

  • Rattink, A. P., De Koning, D. J., Faivre, M., Harlizius, B., van Arendonk, J. A. M., & Groenen, A. M. (2000). Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mammalian Genome, 11, 656–661.

    Article  CAS  Google Scholar 

  • Rehfeldt, C., Fiedler, I., Dietl, G., & Ender, K. (2000). Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science, 66, 177–188.

    Article  Google Scholar 

  • Rehfeldt, C., Ott, G., Gerrard, D. E., Varga, L., Schlote, W., Williams, J. L., Renne, U. & Bünger L. (2006). Effects of the Compact mutant myostatin allele Mstn (Cmpt-dl1Abc) introgressed into a high growth mouse line on skeletal muscle cellularity. Journal of Muscle Research and Cell Motility, 26, 103–112.

    Article  Google Scholar 

  • Rohrer, G. A., Alexander, L. J., Hu, Z., Smith, T. P., Keel, J. W., & Beattie, C. W. (1996). A comprehensive map of the porcine genome. Genome Research, 6, 371–391.

    Article  CAS  Google Scholar 

  • Rothschild, M., Ciobanu. F., & Daniel, C. (2004). Novel calpastatin (CAST) alleles. United States Patent Application 20040048267.

    Google Scholar 

  • Schimpf, R. J., Winkelman-Sim, D. C., Buchanan, F. C., Aalhus, J. L., Plante, Y., & Schmutz, S. M. (2000). QTL for marbling maps to cattle chromosome 2. 27th International Conference on Animal Genetics, Minneapolis, USA.

    Google Scholar 

  • Schmidt, J. V., Matteson, P. G., Jones, B. K., Xiao-Juan, G., & Tilghman, S. M. (2000). The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Development, 14, 1997–2002.

    Google Scholar 

  • Schnabell, R. D., Van Tassell, C. O. P., Matukumalli, L. K., Sonstegard, T. S., Smith, T. P., Moore, S. S., et al. Application of the BovineSNP50 assay for QTL mapping and prediction of genetic merit in holstein cattle. Plant & Animal Genomes XVI Conference (p. 521).

    Google Scholar 

  • Seaton, G., Haley, C. S., Knott, S. A., Kearsey, M., & Visscher, P. M. (2002). QTL Express: User-friendly software to map quantitative trait loci in outbred populations. Bioinformatics, 18,339–340.

    Article  CAS  Google Scholar 

  • Shackelford, S. D., Koohmaraie, M., Cundiff, L. V., Gregory, K. E., Rohrer, G. A., & Savell, J. W. (1994). Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate. Journal of Animal Science, 72, 857–863.

    CAS  Google Scholar 

  • Smith, T. P. L., Casas, E., Rexroad III, C. E., Kappes, S. M., & Keele, J. W. (2000). Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. Journal of Animal Science, 78, 2589–2594.

    CAS  Google Scholar 

  • Snelling, W. M., Casas, E., Stone, R. T., Keele, J. W., Harhay, G. P., Bennett, G. L.,et al. (2005). Linkage mapping bovine EST-based SNP. BMC Genomics, 6, 74–78.

    Article  CAS  Google Scholar 

  • Snelling, W. M., Chiu, R., Schein, J. E., & The International Bovine BAC Mapping Consortium. (2007). A physical map of the bovine genome. Genome Biology, 8, R165 doi:10.1 186/gb-2007-8-8-r165.

    Google Scholar 

  • Solinas-Toldo, S., Lengauer, C., & Fries, R. (1995). Comparative genome map of human and cattle. Genomics, 27, 489–596.

    Article  CAS  Google Scholar 

  • Sorensen, D. A., & Kennedy, B. W. (1983). Estimation of response to selection using least-squares and mixed model methodology. Journal of Animal Science, 58, 1097–1106.

    Google Scholar 

  • Stone, R. T., Keele, J. W., Shackelford, S. D., Kappes, S. M., & Koohmaraie, M. (1999). A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. Journal of Animal Science, 77, 1379–1384.

    CAS  Google Scholar 

  • Thaller, G., Kühn, C., Winter, A., Ewald, G., Bellmann, O., Wegner, J., et al. (2003). DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Animal Genetics, 34, 354–357.

    Article  CAS  Google Scholar 

  • Van Laere, S.-A., Nguyen, M., Braunschweig, M., Nezer, C., Collette, C., Moreau, L., et al. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425, 832–836.

    Google Scholar 

  • Wang, Y. H., Byrne, K. A., Reverter, A., Harper, G. S., Taniguchi, M., McWilliam, S. M., et al. (2005). Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mammalian Genome. 16, 201–210.

    Article  CAS  Google Scholar 

  • Weller, J. I., Kashi, Y., & Soller, M. (1990). Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. Journal of Dairy Science, 73, 2525–2537.

    Article  CAS  Google Scholar 

  • Wheeler, T. L., Cundiff, L. V., Shackelford, S. D., & Koohmaraie, M. (2004). Characterization of biological types of cattle (Cycle VI): Carcass, yield, and longissimus palatability traits. Journal of Animal Science, 82, 1177–1189.

    CAS  Google Scholar 

  • Wiener, P., Smith, J. A., Lewis, A. M., Woolliams, J. A., & Williams, J. L. (2002). Muscle-related traits in cattle: The role of the myostatin gene in the South Devon breed. Genetic Selection and Evolution, 34, 221–232.

    Article  CAS  Google Scholar 

  • Yeo, G. S., Lank, E. J., Farooqi, I. S., Keogh, J., Challis, B. G., & O’Rahilly, S. (2003). Mutations in human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanism. Human Molecular Genetics, 12,561–574.

    Article  CAS  Google Scholar 

  • Zhang, Y., Proenca, R., Maffel, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.

    Article  CAS  Google Scholar 

  • Zhu, B., Smith, J., Tracey, S., Konfortov, B., Welzel, K., Schalkwyk, L., et al. (1999). A five fold coverage BAC library: Production, characterisation and distribution. Mammalian Genome, 10, 706–709.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Williams, J.L. (2008). Genetic Control of Meat Quality Traits. In: Toldrá, F. (eds) Meat Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79382-5_2

Download citation

Publish with us

Policies and ethics