Skip to main content

Models of Human Behavior: Talking to the Animals

  • Chapter
Handbook of Behavior Genetics

Inheritance of behavioral characteristics was known to humankind in prehistoric times and likely came about while domesticating animals. In the Middle East, sheep, goats, and pigs were likely tamed between 6000 and 9000 B.C. There is no written record of the early rise of animal husbandry, but rearing and training of animals were known to the ancient Romans. Well-defined breeding techniques for domesticated livestock were underway in England in the 18th century. At the turn of the 19th century, even rats were bred for their variegated coat colors and behavioral peculiarities (Brush &Driscoll). Breeders conserved the desired characteristics and controlled for undesired aspects by repeatedly selecting those preferred features in offspring, mating “like with like” and producing increasingly homogeneous strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anisman, H., & Matheson, K. (2005). Stress, depression, and anhedonia: caveats concerning animal models. Neuroscience and Biobehavioral Reviews, 29, 525–546.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR (2000). (4th ed., text revision) Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Bailey, A. M., McDaniel, W. F., & Thomas, R. K. (2007). Approaches to the study of higher cognitive functions related to creativity in nonhuman animals. Methods, 42, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Blizard, D. A. (2007). Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains. Behavior Genetics, 37, 146–159.

    Article  PubMed  Google Scholar 

  • Blizard, D. A., & Adams, N. (2002). The Maudsley reactive and nonreactive strains: A new perspective. Behavior Genetics, 32, 277–299.

    Article  PubMed  Google Scholar 

  • Bolivar, V. J., Walters, S. R., & Phoenix, J. L. (2007). Assessing autism-like behavior in mice: Variations in social interactions among inbred strains. Behavioural Brain Research, 176, 21–26.

    Article  PubMed  Google Scholar 

  • Borkenau, P., Riemann, R., Spinath, F. M., & Angleitner, A. (2006). Genetic and environmental influences on Person x Situation profiles. Journal of Personality, 74, 1451–1480.

    Article  PubMed  Google Scholar 

  • Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 212, 1055–1059.

    Article  PubMed  Google Scholar 

  • Bouchard, T. J., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart. Science, 250, 223–250.

    Article  PubMed  Google Scholar 

  • Bourgeron, T., Jamain, S., & Granon, S. (2006). Animal models of autism: Proposed behavioral paradigms and biological studies. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 151–174). Totowa NJ: Humana Press.

    Chapter  Google Scholar 

  • Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., & Barale, F. (2003). Brain anatomy and development in autism: Review of structural MRI studies. Brain Research Bulletin, 61, 557–569.

    Article  PubMed  Google Scholar 

  • Brunner, D., & Hen, R. (1997). Insights into the neurobiology of impulsive behavior from serotonin receptor knockout mice. Annals of the NY Academy of Sciences, 836, 81–105.

    Article  CAS  Google Scholar 

  • Brush, F. R., & Driscoll, P. (2002). Selective breeding program with rats: Introduction. Behavior Genetics, 32, 275–276.

    Article  PubMed  Google Scholar 

  • Bulmer, M. (2003). Francis Galton: Pioneer of heredity and biometry. Baltimore, MD: Johns Hopkins Press.

    Google Scholar 

  • Capitanio, J. P. (1999). Personality dimensions in adult male rhesus macaques: Prediction of behaviors across time and situation. American Journal of Primatology, 47, 299–320.

    Article  PubMed  CAS  Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

    Google Scholar 

  • Chowdari, K. V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., et al. (2002). Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics, 11, 1373–1380.

    Article  PubMed  CAS  Google Scholar 

  • Costa, R. M., Yang, T., Huynh, D. P., Pulst, S. M., Viskochil, D. H., Silva, A. J., et al. (2001). Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nature Genetics, 27, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Crabbe, J. C., Wahlsten, D., & Dudek, B. C. (1999). Genetics of mouse behavior: Interactions with laboratory environment. Science, 284, 1670–1672.

    Article  PubMed  CAS  Google Scholar 

  • Crawley, J. N., Belknap, J. K., Collins, A., Crabbe, J. C., Frankel, W., Henderson, N., et al. (1997). Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology, 132, 107–124.

    Article  PubMed  CAS  Google Scholar 

  • Crawley, J. N., & Paylor, R. (1997). A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Hormones and Behavior, 31, 197–211.

    Article  PubMed  CAS  Google Scholar 

  • D’Adamo, P., Welzl, H., Papadimitriou, S., Raffaele di Barletta, M., Tiveron, C., Tatangelo, L., et al. (2002). Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Human Molecular Genetics, 11, 2567–2580.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of the favoured races in the struggle for life. London: John Murray.

    Google Scholar 

  • Darwin, C. R. (1872). The expression of the emotion in man and animals. London: John Murray.

    Book  Google Scholar 

  • Deacon, R. M., Thomas, C. L., Rawlins, J. N., & Morley, B. J. (2007). A comparison of the behavior of C57BL/6 and C57BL/10 mice. Behavioural Brain Research, 179, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European Journal of Human Genetics, 14, 690–700.

    Article  PubMed  CAS  Google Scholar 

  • D’Hooge, R., Nagels, G., Franck, F., Bakker, C. E., Reyniers, E., Storm, K., et al. (1997). Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience, 76, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Dick, P. (1968). Do Androids Dream of Electric Sheep? New York: Del Ray Books.

    Google Scholar 

  • Dirks, A., Groenink, L., & Olivier, B. (2006). Mutant mouse models of bipolar disorder: Are there any? In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 265–285). Totowa NJ: Humana Press.

    Chapter  Google Scholar 

  • Donarum, E. A., Halperin, R. F., Stephan, D. A., & Narayanan, V. (2006). Cognitive dysfunction in NF1 knock-out mice may result from altered vesicular trafficking of APP/DRD3 complex. BMC Neuroscience, 7, 22.

    Article  PubMed  CAS  Google Scholar 

  • Dutch-Belgian Fragile X Consortium. (1994). Fmr1 knockout mice: a model to study fragile X mental retardation. Cell, 78, 23–33.

    Google Scholar 

  • Ehringer, M. A., Rhee, S. H., Young, S., Corley, R., & Hewitt, J. K. (2006). Genetic and environmental contributions to common psychopathologies of childhood and adolescence: A study of twins and their siblings. Journal of Abnormal Child Psychology, 34, 1–17.

    Article  PubMed  Google Scholar 

  • Feaver, J., Mendl, M., & Bateson, P. (1986). A method for rating the individual distinctiveness of domestic cats. Animal Behaviour, 34, 1016–1025.

    Article  Google Scholar 

  • Fiala, B. A., Joyce, J. N., & Greenough, W. T. (1978). Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Experimental Neurology, 59, 372–383.

    Article  PubMed  CAS  Google Scholar 

  • Fisch, G. S. (2003). Transgenic models of complex behavioral phenotypes. Invited Symposium for the annual meeting of the American Society of Human Genetics, Los Angeles, CA, November, 2003.

    Google Scholar 

  • Fisch, G. S. (2006). Transgenic and knockout models of neuropsychiatric disorders: Introduction, history, assessment. In G. S. Fisch & J. Flint (Eds.),Transgenic and knockout models of neuropsychiatric disorders (pp. 3–23). Totowa NJ: Humana Press.

    Google Scholar 

  • Fisch, G. S., Hao, H. H., Bakker, C., & Oostra, B. A. (1999). Learning and memory in the FMR1 knockout mouse. American Journal of Medical Genetics, 84, 277–282.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168–170.

    Article  PubMed  CAS  Google Scholar 

  • Flint, J. (1999). The genetic basis of cognition. Brain, 122, 2015–2032.

    Article  PubMed  Google Scholar 

  • Freedman, R., Adler, L. E., Waldo, M. C., Pachtman, E., & Franks, R. D. (1983). Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: Comparison of medicated and drug-free patients. Biological Psychiatry, 18, 537–551.

    PubMed  CAS  Google Scholar 

  • Fullerton, J., Cubin, M., Tiwari, H., Wang, C., Bomhra, A., Davidson, S., et al. (2003). Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. American Journal of Human Genetics, 72, 879–890.

    Article  PubMed  CAS  Google Scholar 

  • Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: MacMillan and Co.

    Google Scholar 

  • Galton, F. (1883). Inquiries into human faculty and its development. New York: AMS Press.

    Google Scholar 

  • Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.

    Google Scholar 

  • Gecz, J., Gedeon, A. K., Sutherland, G. R., & Mulley, J. C. (2006). Identification of the gene FMR2, associated with FRAXE mental retardation. Nature Genetics, 13, 105–108.

    Article  Google Scholar 

  • Goldsmith, H. H., Buss, K. A., & Lemery, K. S. (1997). Toddler and childhood temperament: Expanded content, stronger genetic evidence, new evidence for the importance of environment. Developmental Psychology, 33, 891–905.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., & Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Science, USA, 77, 7380–7384.

    Article  CAS  Google Scholar 

  • Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? Psychological Bulletin, 127, 45–86.

    Article  PubMed  CAS  Google Scholar 

  • Gould, J. L. (1975). Honey bee recruitment: The dance-language controversy. Science, 189, 685–693.

    Article  PubMed  CAS  Google Scholar 

  • Gould, T. D., & Gottesman, I. I. (2003). Psychiatric endophenotypes and the development of valid animal models. Genes, Brain, and Behavior, 5, 113–119.

    Article  Google Scholar 

  • Gu, Y., McIlwain, K. L., Weeber, E. J., Yamagata, T., Xu, B., Antalffy, B. A., et al. (2002). Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. Journal of Neuroscience, 22, 2753–2763.

    PubMed  CAS  Google Scholar 

  • Haile, C. N., Kosten, T. R., & Kosten, T. A. (2007). Genetics of dopamine and its contribution to cocaine addiction. Behavior Genetics, 37, 119–145.

    Article  PubMed  Google Scholar 

  • Hayes, L. J., & Delgado, D. (2006). If only they could talk: Genetic mouse models for psychiatric disorders. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 69–83). Totowa NJ: Humana Press.

    Google Scholar 

  • Hayes, L. J., & Delgado, D. (2007). Invited commentary on animal models in psychiatry: Animal models of non-conventional human behavior. Behavior Genetics, 37, 11–17.

    Article  PubMed  Google Scholar 

  • Hoekstra, R. A., Bartels, M., Verweij, C. J., & Boomsma, D. I. (2007). Heritability of autistic traits in the general population. Archives of Pediatric and Adolescent Medicine, 161, 372–377.

    Article  Google Scholar 

  • Holmes, A., & Cryan, J. F. (2006). Modeling human anxiety and depression in mutant mice. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 237–264). Totowa, NJ: Humana Press.

    Google Scholar 

  • Holmes, A., Yang, R. J., Murphy, D. L., & Crawley, J. N. (2002). Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology, 27, 914–923.

    Article  PubMed  CAS  Google Scholar 

  • Hudziak, J. J., Van Beijsterveldt, C. E., Althoff, R. R., Stanger, C., Rettew, D. C., Nelson, E. C., et al. (2004). Genetic and environmental contributions to the child behavior checklist obsessive-compulsive scale: A cross-cultural twin study. Archives of General Psychiatry, 61, 608–616.

    Article  PubMed  Google Scholar 

  • Jamain, S., Quach, H., Betancur, C., Rrastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.

    Article  PubMed  CAS  Google Scholar 

  • Jang, K. L., Livesley, W. J., & Vernon, P. A. (1996). Heritability of the big five personality dimensions and their facets: A twin study. Journal of Personality, 64, 577–591.

    Article  PubMed  CAS  Google Scholar 

  • Jang, K. L., Woodward, T. S., Lang, D., Honer, W. G., & Livesley, W. J. (2005). The genetic and environmental basis of the relationship between schizotypy and personality: A twin study. Journal of Nervous and Mental Disease, 193, 153–159.

    Article  PubMed  Google Scholar 

  • Karayiorgou, M., Morris, M. A., Morrow, B., Shprintzen, R. J., Goldberg, R., Borrow, J., et al. (1995). Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proceedings of the National Academy of Sciences in the United States of America, 92, 7612–7616.

    Article  CAS  Google Scholar 

  • Kas, M. J., Fernandes, C., Schalkwyk, L. C., & Collier, D. A. (2007). Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Molecular Psychiatry, 12, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Kemphorne, O. (1997). Heritability: Uses and abuses. Genetica, 99, 109–112.

    Google Scholar 

  • Kendler, K. S., Gardner, C. O., Gatz, M., & Pedersen, N. L. (2007). The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample. Psychological Medicine, 37, 453–462.

    Article  PubMed  Google Scholar 

  • Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). A Swedish national twin study of lifetime major depression. American Journal of Psychiatry, 163, 109–114.

    Article  PubMed  Google Scholar 

  • Kovas, Y., & Plomin, R. (2006). Generalist genes: Implications for the cognitive sciences. Trends in Cognitive Sciences, 10, 198–203.

    Article  PubMed  Google Scholar 

  • Lafollette, H., & Shanks, N. (1995). Two models of models in biomedical research. Philosophical Quarterly, 45, 141–160.

    Article  Google Scholar 

  • Lander, E. S., & Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185–199.

    PubMed  CAS  Google Scholar 

  • Landgraf, R., & Wigger, A. (2002). High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behavior Genetics, 32, 301–314.

    Article  PubMed  Google Scholar 

  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, B. A., Shriberg, L. D., Freebairn, L. A., Hansen, A. J., Stein, C. M., Taylor, H. G., et al. (2006). The genetic bases of speech sound disorders: Evidence from spoken and written language. Journal of Speech, Language, and Hearing Research, 49, 1294–1312.

    Article  PubMed  Google Scholar 

  • Liu, H., Heath, S. C., Sobin, C., Roos, J. L., Galke, B. L., Blundell, M. L., et al. (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences in the United States of America, 99, 3717–3722.

    Article  CAS  Google Scholar 

  • Logue, S. F., Paylor, R., & Wehner, J. M. (1997). Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behavioral Neuroscience, 111, 104–113.

    Article  PubMed  CAS  Google Scholar 

  • Macphail, E. M. (1982). Brain and intelligence in vertebrates. Oxford: Clarendon Press.

    Google Scholar 

  • Macphail, E. M. (1998). The evolution of consciousness. Oxford: Oxford University Press.

    Google Scholar 

  • Mathiesen, K. S., & Tambs, K. (1999). The EAS temperament questionnaire – factor structure, age trends, reliability, and stability in a Norwegian sample. Journal of Child Psychology and Psychiatry, 40, 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Mazzocco, M. M. M., & Reiss, A. L. (1997). Normal variation in size of the FMR1 gene is not associated with intellectual performance. Intelligence, 24, 355–366.

    Article  Google Scholar 

  • McCrae, R. R., & Costa, P. T. Jr. (1987). Validation of the five-factor model of personality across instruments and observers. Journal of Personality and Social Psychology, 52, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • McKinney, W. T. Jr., & Bunney, W. E. Jr. (1969). Animal model of depression. I. Review of evidence: implications for research. Archives of General Psychiatry, 21, 240–248.

    PubMed  Google Scholar 

  • Metten, P., Buck, K. J., Merrill, C. M., Roberts, A. J., Yu, C. H., & Crabbe, J. C. (2007). Use of a novel mouse genotype to model acute benzodiazepine withdrawal. Behavior Genetics, 37, 160–170.

    Article  PubMed  Google Scholar 

  • Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 1415–1423.

    Article  PubMed  CAS  Google Scholar 

  • Mineur, Y. S., Huynh, L. X., & Crusio, W. E. (2006). Social behavior deficits in the Fmr1 mutant mouse. Behavioural Brain Research, 168, 172–175.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa, T., Leiter, L. M., Gerber, D. J., Gainetdinov, R. R., Sotnikova, T. D., Zeng, H. et al. (2003). Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proceedings of the National Academy of Science, USA, 100, 8987–8992.

    Article  CAS  Google Scholar 

  • Moon, J., Beaudin, A. E., Verosky, S., Driscoll, L. L., Weiskopf, M., Levitsky, D. A., et al. (2006). Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behavioral Neurosciences, 120, 1367–1379.

    Article  CAS  Google Scholar 

  • Moretti, P., Levenson, J. M., Battaglia, F., Atkinson, R., Teague, R., Antalffy, B., et al. (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. Journal of Neuroscience, 26, 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Morley, K. I., & Montgomery, G. W. (2001). The genetics of cognitive processes: Candidate genes in humans and animals. Behavior Genetics, 31, 511–531.

    Article  PubMed  CAS  Google Scholar 

  • Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., et al. (2004). Sociability and preference for social novelty in five inbred strains: An approach to assess autistic-like behavior in mice. Genes, Brain and Behavior, 3, 287–302.

    Article  CAS  Google Scholar 

  • Moy, S. S., Nadler, J. J., Young, N. B., Perez, A., Holloway, L. P., Barbaro, R. P., et al. (2007). Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains. Behavioural Brain Research, 176, 4–20.

    Article  PubMed  Google Scholar 

  • Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Newport, D. J., Stowe, Z. N., & Nemeroff, C. B. (2002). Parental depression: Animal models of an adverse life event. American Journal of Psychiatry, 159, 1265–1283.

    Article  PubMed  Google Scholar 

  • O’Tuathaigh, C. M., Babovic, D., O’Meara, G., Clifford, J. J., Croke, D. T., & Waddington, J. L. (2006). Susceptibility genes for schizophrenia: Characterisation of mutant mouse models at the level of phenotypic behaviour. Neuroscience and Biobehavioral Reviews, 31, 60–78.

    Article  PubMed  CAS  Google Scholar 

  • Ørstavik, R. E., Kendler, K. S., Czajkowski, N., Tambs, K., and Reichborn-Kjennerud, T. (2007). Genetic and environmental contributions to depressive personality disorder in a population-based sample of Norwegian twins. Journal of Affective Disorders, 99, 181–189.

    Article  PubMed  Google Scholar 

  • Paradee, W., Melikian, H. E., Rasmussen, D. L., Kenneson, A., Conn, P. J., & Warren S. T. (1999). Fragile X mouse: Strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience, 94, 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Paylor, R., Glaser, B., Mupo, A., Ataliotis, P., Spencer, C., Sobotka, A., et al. (2006). Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proceedings of the National Academy of Sciences in the United States of America, 103, 7729–7734.

    Article  CAS  Google Scholar 

  • Plomin, R. (2003). Genetics, genes, genomics and g. Molecular Psychiatry, 8, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, R., Jacquot, S., Vaillend, C., Soutthiphong, A. A., Libbey, M., Davis, S., et al. (2007). Deletion of the Coffin-Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behavior Genetics, 37, 31–50.

    Article  PubMed  CAS  Google Scholar 

  • Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., et al. (1998). Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proceedings of the National Academy of Sciences in the United States of America, 95, 14476–14481.

    Article  CAS  Google Scholar 

  • Reacuteale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Review of the Cambridge Philosophy Society, 82, 291–318.

    Article  Google Scholar 

  • Risch, N., Spiker, D., Lotspeich, L., Nouri, N., Hinds, D., Hallmayer, J., et al. (1999) A genomic screen of autism: Evidence for a multilocus etiology. American Journal of Human Genetics, 65, 493–507.

    Article  PubMed  CAS  Google Scholar 

  • Rojas, P., Joodmardi, E., Hong, Y., Perlmann, T., & Ogren, S.O. (2007). Adult mice with reduced Nurr1 expression: An animal model for schizophrenia. Molecular Psychiatry, 12, 756–766.

    Article  PubMed  CAS  Google Scholar 

  • Sadakata, T., Washida, M., Iwayama, Y., Shoji, S., Sato, Y., Ohkura, T., et al. (2007). Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. The Journal of Clinical Investigation, 117, 931–943.

    Article  PubMed  CAS  Google Scholar 

  • Sara, S. J., Devauges, V., Biegon, A., & Blizard, D. A. (1994). The Maudsley rat strains as a probe to investigate noradrenergic-cholinergic interaction in cognitive function. Journal of Physiology, 88, 337–345.

    PubMed  CAS  Google Scholar 

  • Saudino, K. J. (2005). Behavioral genetics and child temperament. Journal of Developmental and Behavioral Pediatrics, 26, 214–223.

    Article  PubMed  Google Scholar 

  • Saudino, K. J., McGuire, S., Reiss, D., Hetherington, E. M., & Plomin, R. (1995). Parent ratings of EAS temperaments in twins, full siblings, half siblings, and step siblings. Journal of Personality and Social Psychology, 68, 723–733.

    Article  PubMed  CAS  Google Scholar 

  • Shahbazian, M., Young, J., Yuva-Paylor, L., Spencer, C., Antalffy, B., Noebels, J., et al. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Shih, R. A., Belmonte, P. L., & Zandi, P. P. (2004). A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. International Review of Psychiatry, 16, 260–283.

    Article  PubMed  Google Scholar 

  • Silva, A. J., Frankland, P. W., Marowitz, Z., Friedman, E., Laszlo G. S., Cioffi, D., et al. (1997). A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature Genetics, 15, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, B. F. (1957). Verbal behavior. New York: Appleton-Century-Crofts.

    Book  Google Scholar 

  • Spearman, C. (1927). The abilities of man, their nature and measurement. London: MacMillan and Co.

    Google Scholar 

  • Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., et al. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, R. J., & Detterman, D. K. (1986). What is intelligence? Contemporary viewpoints on its nature and definition. Norwood, NJ: Ablex.

    Google Scholar 

  • Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., et al. (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. American Journal of Human Genetics, 71, 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Stromswold, K. (2001). The heritability of language: a review and meta-analysis of twin, adoption and linkage studies. Language, 77, 647–723.

    Article  Google Scholar 

  • Stromswold, K. (2006). Why aren’t identical twins linguistically identical? Genetic, prenatal and postnatal factors. Cognition, 101, 333–384.

    Article  PubMed  Google Scholar 

  • Tabuchi, K., Blundell, J., Etherton, M. R., Hammer, R. E., Liu, X., Powell C. M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 318, 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K. R., & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R., Crinella, F. M., & Yu, J. (1990). Brain mechanisms in problem solving and intelligence. New York: Plenum Press.

    Google Scholar 

  • Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. The Psychological Review: Monograph Supplements, 8.

    Google Scholar 

  • Thorndike, E. L. (1921). Intelligence and its measurement: A symposium. Journal of Educational Psychology, 12, 124–127.

    Article  Google Scholar 

  • Tolman, E. C. (1924). The inheritance of maze-learning ability in rats. Journal of Comparative Psychology, 4, 1–18.

    Article  Google Scholar 

  • Tryon, R. C. (1940). Genetic differences in maze-learning ability in rats. Yearbook for National Social Studies and Education, 39, 111–119.

    Google Scholar 

  • Tupes, E. C., & Christal, R. E. (1961). Recurrent personality factors based on trait ratings. USAF ASD Technical Report, No. 61–97.

    Google Scholar 

  • Upchurch, M., & Wehner, J. M. (1988). Differences between inbred strains of mice in Morris water maze performance. Behavior Genetics, 18, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Urani, A., Chourbaji, S., & Gass P. (2005). Mutant mouse models of depression: Candidate genes and current mouse lines. Neuroscience & Biobehavioral Reviews, 29, 805–828.

    Article  CAS  Google Scholar 

  • Wahlsten, D. (1999). Single-gene influences on brain and behavior. Annual Review of Psychology, 50, 599–624.

    Article  PubMed  CAS  Google Scholar 

  • Wahlsten, D. (2001). Standardizing tests of mouse behavior: Reasons, recommendations, and reality. Physiology & Behavior, 73, 695–704.%

    Article  CAS  Google Scholar 

  • Wahlsten, D., Bachmanov, A., Finn, D. A., & Crabbe, J. C. (2006). Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proceedings of the National Academy of Sciences in the United States of America, 103, 16364–16369.

    Article  CAS  Google Scholar 

  • Wahlsten, D., Cooper S. F., & Crabbe, J. C. (2005). Different rankings of inbred mouse strains on the Morris maze and a refined 4-arm water escape task. Behavioural Brain Research, 165, 36–51.

    Article  PubMed  Google Scholar 

  • Wahlsten, D., Rustay, N. R., Metten, P., & Crabbe, J. C. (2003). In search of a better mouse test. Trends in Neuroscience, 26, 132–136.

    Article  CAS  Google Scholar 

  • Wehner, J. M., Radcliffe, R. A., & Bowers, B. J. (2001). Quantitative genetics and mouse behavior. Annual Review in Neuroscience, 24, 845–867.

    Article  CAS  Google Scholar 

  • Weller, A., Leguisamo, A. C., Towns, L., Ramboz, S., Bagiella, E., Hofer, M., et al. (2003). Maternal effects in infant and adult phenotypes of 5HT1A and 5HT1B receptor knockout mice. Developmental Psychobiology, 42, 194–205.

    Article  PubMed  Google Scholar 

  • Welzl, H., D’Adamo, P., Wolfer, D. P., & Lipp, H.-P. (2006). Mouse models of hereditary mental retardation. In G. S. Fisch, & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 101–126). Totowa NJ: Humana Press.

    Chapter  Google Scholar 

  • White, S. A., Fisher, S. E., Geschwind, D. H., Scharff, C., & Holy, T. E. (2006). Singing mice, songbirds, and more: Models for FOXP2 function and dysfunction in human speech and language. Journal of Neuroscience, 11, 10376–10379.

    Article  CAS  Google Scholar 

  • Whorf, B. (1940). Science and linguistics. reprinted in Language, thought & reality. Cambridge, MA: MIT Press.

    Google Scholar 

  • Widiger, T. A., & Trull, T. J. (2007). Plate tectonics in the classification of personality disorder: Shifting to a dimensional model. American Psychologist, 62, 71–83.%

    Article  PubMed  Google Scholar 

  • Williams, H. J., Owen, M. J., & O’Donovan, M. C. (2007). Is COMT a susceptibility gene for schizophrenia? Schizophrenia Bulletin, 33, 635–641.

    Article  PubMed  Google Scholar 

  • Willis-Owen, S. A., & Flint, J. (2007). Identifying the genetic determinants of emotionality in humans; insights from rodents. Neuroscience and Biobehavioural Reviews, 31, 115–124.

    Article  CAS  Google Scholar 

  • Wolfer, D. P., Crusio, W. E., & Lipp, H. P. (2002). Knockout mice: Simple solutions to the problems of genetic background and flanking genes. Trends in Neuroscience, 25, 336–340.

    Article  CAS  Google Scholar 

  • Wolfer, D. P., & Lipp, H. P. (2000). Dissecting the behaviour of transgenic mice: Is it the mutation, the genetic background, or the environment? Experimental Physiology, 85, 627–634.

    Article  PubMed  CAS  Google Scholar 

  • Wolfer, D. P., Litvin, O., Morf, S., Nitsch, R. M., Lipp, H. P., & Würbel, H. (2004). Laboratory animal welfare: Cage enrichment and mouse behaviour. Nature, 432, 821–822.

    Article  PubMed  CAS  Google Scholar 

  • Yacoubi, M., & Vaugeois, J. M. (2007). Genetic rodent models of depression. Current Opinion in Pharmacology, 7, 3–7.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata, S., Suzuki, A., Ando, J., Ono, Y., Kijima, N., Yoshimura, K., et al. (2006). Is the genetic structure of human personality universal? A cross-cultural twin study from North America, Europe, and Asia. Journal of Personality and Social Psychology, 90, 987–998.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene S. Fisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fisch, G.S. (2009). Models of Human Behavior: Talking to the Animals. In: Kim, YK. (eds) Handbook of Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76727-7_5

Download citation

Publish with us

Policies and ethics