Skip to main content

Animal Models of Autism

Proposed Behavioral Paradigms and Biological Studies

  • Chapter
Transgenic and Knockout Models of Neuropsychiatric Disorders

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Autism is a developmental disorder characterized by impaired social interaction and communication, in addition to a restricted range of interests and activities. Although this syndrome may seem specific to humans, the very few genes known to be associated with autism are also present in other species. Therefore, studies of animals bearing mutations in these genes may give crucial information for the understanding of the biological pathways involved in the development of autism in humans. These animal models of autism may also shed light on the complex development of higher cognitive functions during evolution (i.e., language or theory of mind). Because of the multifaceted behavior and cognitive profiles present in individuals with autism, there is a need for adequate behavioral paradigms and biological studies to investigate the role of specific genes in different aspects of the autism spectrum. This chapter, focusing mainly on findings reported in humans and in mice, is divided into three parts. The first part summarizes the current findings obtained from studies of animals harboring mutations associated with autism spectrum disorders. The second part proposes behavioral tests as paradigms for diagnostic items for autism. Finally, the third part discusses how associated clinical or biological findings observed in individuals with autism could be manifested in animal models. This chapter should not be considered as a strict guideline, but rather as a framework to study the present and future animal models of autism and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th Ed. Washington DC: American Psychiatric Press, 1994.

    Google Scholar 

  2. Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001;2:943–955.

    PubMed  CAS  Google Scholar 

  3. Bailey A, Le Couleur A, Grottesman I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychological Medicine 1995;25:63–77.

    PubMed  CAS  Google Scholar 

  4. Bourgeron T, Giros B. Genetic markers in psychiatric genetics. Methods Mol Med 2003;77:63–98.

    PubMed  Google Scholar 

  5. Belmonte MK, Cook EH, Anderson GM, et al. Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry, 2004.

    Google Scholar 

  6. Seong E, Seasholtz AF, Burmeister M. Mouse models for psychiatric disorders. Trends Genet 2002;18:643–650.

    PubMed  CAS  Google Scholar 

  7. Jamain S, Quach H, Betancur C, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003;34:27–29.

    PubMed  CAS  Google Scholar 

  8. Veenstra-Vander Weele J, Cook EH. Molecular genetics of autism spectrum disorder. Mol Psychiatry, 2004.

    Google Scholar 

  9. Pickles A, Bolton P, Macdonald H, et al. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. Am J Hum Genet 1995;57:717–726.

    PubMed  CAS  Google Scholar 

  10. Bardoni B, Mandel JL. Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Curr Opin Genet Dev 2002; 12:284–293.

    PubMed  CAS  Google Scholar 

  11. Wassink TH, Piven J, Vieland VJ, et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 2001;105:406–413.

    PubMed  CAS  Google Scholar 

  12. The Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 1994;78:23–33.

    Google Scholar 

  13. Bakker CE, Oostra BA. Understanding fragile X syndrome: insights from animal models. Cytogenet Genome Res 2003;100:111–123.

    PubMed  CAS  Google Scholar 

  14. Kooy RF. Of mice and the fragile X syndrome. Trends Genet 2003;19:148–154.

    PubMed  Google Scholar 

  15. D’Hooge R, Nagels G, Franck F, et al. Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 1997;76:367–376.

    Google Scholar 

  16. Dobkin C, Rabe A, Dumas R, et al. Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 2000;100:423–429.

    PubMed  CAS  Google Scholar 

  17. Nielsen DM, Derber WJ, McClellan DA, Crnic LS. Alterations in the auditory startle response in Fmr1 targeted mutant mouse models of fragile X syndrome. Brain Res 2002;927:8–17.

    PubMed  CAS  Google Scholar 

  18. Chen L, Toth M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 2001;103:1043–1050.

    PubMed  CAS  Google Scholar 

  19. Tuchman R, Rapin I. Epilepsy in autism. Lancet Neurol 2002; 1:352–358.

    PubMed  Google Scholar 

  20. Brown V, Jin P, Ceman S, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001;107:477–487.

    PubMed  CAS  Google Scholar 

  21. Zalfa F, Giorgi M, Primerano B, et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 2003;112:317–327.

    PubMed  CAS  Google Scholar 

  22. Irwin SA, Patel B, Idupulapati M, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001;98:161–167.

    PubMed  CAS  Google Scholar 

  23. Nimchinsky EA, Oberlander AM, Svoboda K. Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 2001;21:5139–5146.

    PubMed  CAS  Google Scholar 

  24. Scheiffele P, Fan JH, Choih J, Fetter R, Serafini T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 2000;101:657–669.

    PubMed  CAS  Google Scholar 

  25. Dean C, Scholl FG, Choih J, et al. Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 2003;6:708–716.

    PubMed  CAS  Google Scholar 

  26. Peier AM, McIlwain KL, Kenneson A, et al. (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet 2000;9:1145–1159.

    PubMed  CAS  Google Scholar 

  27. Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185–188.

    PubMed  CAS  Google Scholar 

  28. Ashley-Koch AE, Carrey RJ, Wolpert CM, et al. Screening for MECP2 mutations in females with autistic disorder. In: IXth World Congress of Psychiatric Genetics. St. Louis, 2001.

    Google Scholar 

  29. Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001;27:327–331.

    PubMed  CAS  Google Scholar 

  30. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 2001;27:322–326.

    PubMed  CAS  Google Scholar 

  31. Shahbazian M, Young J, Yuva-Paylor L, et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 2002;35:243–254.

    PubMed  CAS  Google Scholar 

  32. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997;88:471–481.

    PubMed  CAS  Google Scholar 

  33. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998;393:386–389.

    PubMed  CAS  Google Scholar 

  34. Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002;11:115–124.

    PubMed  CAS  Google Scholar 

  35. Zoghbi HY. Postnatal neurodevelopmental disorders: meeting at the synapse? Science 2003;302:826–830.

    PubMed  CAS  Google Scholar 

  36. Smalley SL. Autism and tuberous sclerosis. J Autism Dev Disord 1998;28:407–414.

    PubMed  CAS  Google Scholar 

  37. Serajee FJ, Nabi R, Zhong H, Mahbubul Huq AH. Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: implications for phosphatidylinositol signalling in autism. J Med Genet 2003;40:e119.

    PubMed  CAS  Google Scholar 

  38. Onda H, Lueck A, Marks PW, Warren HB, Kwiatkowski DJ. Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest 1999;104:687–695.

    PubMed  CAS  Google Scholar 

  39. Kobayashi T, Minowa O, Kuno J, et al. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 1999;59:1206–1211.

    PubMed  CAS  Google Scholar 

  40. Kobayashi T, Minowa O, Sugitani Y, et al. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci USA 2001;98:8762–8767.

    PubMed  CAS  Google Scholar 

  41. Uhlmann EJ, Wong M, Baldwin RL, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 2002;52:285–296.

    PubMed  CAS  Google Scholar 

  42. Rosser TL, Packer RJ. Neurocognitive dysfunction in children with neurofibromatosis type 1. Curr Neurol Neurosci Rep 2003;3:129–136.

    PubMed  Google Scholar 

  43. Arun D, Gutmann DH. Recent advances in neurofibromatosis type 1. Curr Opin Neurol 2004;17:101–105.

    PubMed  CAS  Google Scholar 

  44. Gillberg C, Forsell C. Childhood psychosis and neurofibromatosis—more than a coincidence? J Autism Dev Disord 1984;14:1–8.

    PubMed  CAS  Google Scholar 

  45. Dasgupta B, Gutmann DH. Neurofibromatosis 1: closing the GAP between mice and men. Curr Opin Genet Dev 2003;13:20–27.

    PubMed  CAS  Google Scholar 

  46. Costa RM, Silva AJ. Mouse models of neurofibromatosis type I: bridging the GAP. Trends Mol Med 2003;9:19–23.

    PubMed  CAS  Google Scholar 

  47. Jacks T, Shih TS, Schmitt EM, et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 1994;7:353–361.

    PubMed  CAS  Google Scholar 

  48. Guo HF, Tong J, Hannan F, Luo L, Zhong Y. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 2000;403:895–898.

    PubMed  CAS  Google Scholar 

  49. Zhu Y, Romero MI, Ghosh P, et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 2001;15:859–876.

    PubMed  CAS  Google Scholar 

  50. Costa RM, Yang T, Huynh DP, et al. Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat Genet 2001;27:399–405.

    PubMed  CAS  Google Scholar 

  51. Silva AJ, Frankland PW, Marowitz Z, et al. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 1997;15:281–284.

    PubMed  CAS  Google Scholar 

  52. Costa RM, Federov NB, Kogan JH, et al. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 2002;415:526–530.

    PubMed  CAS  Google Scholar 

  53. Amaral DG, Bauman MD, Schumann CM. The amygdala and autism: implications from non-human primate studies. Genes Brain Behav 2003;2:295–302.

    PubMed  CAS  Google Scholar 

  54. Tropepe V, Sive HL. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav 2003;2:268–281.

    PubMed  CAS  Google Scholar 

  55. Garner JP, Meehan CL, Mench JA. Stereotypies in caged parrots, schizophrenia and autism: evidence for a common mechanism. Behav Brain Res 2003;145:125–134.

    PubMed  Google Scholar 

  56. Teitelbaum P. A proposed primate animal model of autism. Eur Child Adolesc Psychiatry 2003;12:48–49.

    PubMed  Google Scholar 

  57. Machado CJ, Bachevalier J. Non-human primate models of childhood psychopathology: the promise and the limitations. J Child Psychol Psychiatry 2003;44:64–87.

    PubMed  Google Scholar 

  58. Young LJ, Pitkow LJ, Ferguson JN. Neuropeptides and social behavior: animal models relevant to autism. Mol Psychiatry 2002;7(Suppl 2):S38–39.

    PubMed  Google Scholar 

  59. Pletnikov MV, Moran TH, Carbone KM. Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Front Biosci 2002;7:d593–607.

    PubMed  CAS  Google Scholar 

  60. Pletnikov MV, Jones ML, Rubin SA, Moran TH, Carbone KM. Rat model of autism spectrum disorders. Genetic background effects on Borna disease virus-induced developmental brain damage. Ann NY Acad Sci 2001;939:318–319.

    PubMed  CAS  Google Scholar 

  61. Young LJ. Oxytocin and vasopressin as candidate genes for psychiatric disorders: lessons from animal models. Am J Med Genet 2001;105:53–54.

    PubMed  CAS  Google Scholar 

  62. Insel TR. Mouse models for autism: report from a meeting. Mamm Genome 2001;12:755–757.

    PubMed  CAS  Google Scholar 

  63. Andres C, Beeri R, Friedman A, et al. Acetylcholinesterase-transgenic mice display embryonic modulations in spinal cord choline acetyltransferase and neurexin i-beta gene expression followed by late-onset neuromotor deterioration. Proc Natl Acad Sci USA 1997;94:8173–8178.

    PubMed  CAS  Google Scholar 

  64. Bachevalier J. Brief report: medial temporal lobe and autism: a putative animal model in primates. J Autism Dev Disord 1996;26:217–220.

    PubMed  CAS  Google Scholar 

  65. Wolterink G, Daenen LE, Dubbeldam S, et al. Early amygdala damage in the rat as a model for neurodevelopmental psychopathological disorders. Eur Neuropsychopharmacol 2001;11:51–59.

    PubMed  CAS  Google Scholar 

  66. Muris P, Steerneman P, Merckelbach H, Holdrinet I, Meesters C. Comorbid anxiety symptoms in children with pervasive developmental disorders. J Anxiety Disord 1998;12:387–393.

    PubMed  CAS  Google Scholar 

  67. Pletnikov MV, Rubin SA, Vasudevan K, Moran TH, Carbone KM. Developmental brain injury associated with abnormal play behavior in neonatally Borna disease virus-infected Lewis rats: a model of autism.Behav Brain Res 1999;100:43–50.

    PubMed  CAS  Google Scholar 

  68. Insel TR, Young LJ. The neurobiology of attachment. Nat Rev Neurosci 2001;2:129–136.

    PubMed  CAS  Google Scholar 

  69. Modahl C, Green L, Fein D, et al. Plasma oxytocin levels in autistic children. Biol Psychiatry 1998;43:270–277.

    PubMed  CAS  Google Scholar 

  70. Thinus-Blanc C. Animal Spatial Cognition. Behavioral & Neural Approaches. Singapore, New Jersey, London, Hong Kong: World Scientific Publishing, 1996.

    Google Scholar 

  71. Whishaw IQ. A comparison of rats and mice in a swimming pool place task and matching to place task: some surprising differences. Physiol Behav 1995;58:687–693.

    PubMed  CAS  Google Scholar 

  72. Wolff M, Savova M, Malleret G, Segu L, Buhot MC. Differential learning abilities of 129T2/Sv and C57BL/6J mice as assessed in three water maze protocols.Behav Brain Res 2002;136:463–474.

    PubMed  Google Scholar 

  73. Laviola G, Terranova ML. The developmental psychobiology of behavioural plasticity in mice:the role of social experiences in the family unit. Neurosci Biobehav Rev 1998;23:197–213.

    PubMed  CAS  Google Scholar 

  74. Laviola G, Macri S, Morley-Fletcher S, Adriani W. Risk-taking behavior in adolescent mice: psy-chobiological determinants and early epigenetic influence. Neurosci Biobehav Rev 2003;27:19–31.

    PubMed  Google Scholar 

  75. Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science 1999;284:1670–1672.

    PubMed  CAS  Google Scholar 

  76. Granon S, Faure P, Changeux JP. Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA 2003;100:9596–9601.

    PubMed  CAS  Google Scholar 

  77. Valsecchi P, Bartolomucci A, Aversano M, Visalberghi E. Learning to cope with two different food distributions: the performance of house mice (Mus musculus domesticus). J Comp Psychol 2000;114:272–280.

    PubMed  CAS  Google Scholar 

  78. Premak J, Woodruff G. Does the chimpanzee have a theory of mind? Behav Brain Sci 1978;4: 515–526.

    Google Scholar 

  79. Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a “theory of mind”? Cognition 1985;21:37–46.

    PubMed  CAS  Google Scholar 

  80. Suddendorf T, Whiten A. Mental evolution and development: evidence for secondary representation in children, great ages, and other animals. Psychol Bull 2001;127:629–650.

    PubMed  CAS  Google Scholar 

  81. Hauser MD, Chomsky N, Fitch WT. The faculty of language: what is it, who has it, and how did it evolve? Science 2002;298:1569–1579.

    PubMed  CAS  Google Scholar 

  82. Popper AN, Fay RR. Evolution of the ear and hearing: issues and questions. Brain Behav Evol 1997;50:213–221.

    PubMed  CAS  Google Scholar 

  83. Liu RC, Miller KD, Merzenich MM, Schreiner CE. Acoustic variability and distinguishability among mouse ultrasound vocalizations. J Acoust Soc Am 2003;114:3412–3422.

    PubMed  Google Scholar 

  84. Ehret G, Riecke S. Mice and humans perceive multiharmonic communication sounds in the same way. Proc Natl Acad Sci USA 2002;99:479–482.

    PubMed  CAS  Google Scholar 

  85. Geissler DB, Ehret G. Time-critical integration of formants for perception of communication calls in mice. Proc Natl Acad Sci USA 2002;99:9021–9025.

    PubMed  CAS  Google Scholar 

  86. Ehret G. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 1987;325:249–251.

    PubMed  CAS  Google Scholar 

  87. Danzer R. Stress, stereotypies and welfare. Behavioral Processes 1991;25:95–102.

    Google Scholar 

  88. Valenstein ES. Stereotyped Behaviour and Stress. New York: Plenum, 1976, pp. 116–124.

    Google Scholar 

  89. Robbins TW, Koob GF. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 1980;285:409–412.

    PubMed  CAS  Google Scholar 

  90. Harkin A, Kelly JP, Frawley J, O’Donnell JM, Leonard BE. Test conditions influence the response to a drug challenge in rodents. Pharmacol Biochem Behav 2000;65:389–398.

    PubMed  CAS  Google Scholar 

  91. Humby T, Laird FM, Davies W, Wilkinson LS. Visuospatial attentional functioning in mice: interactions between cholinergic manipulations and genotype. Eur J Neurosci 1999;11:2813–2823.

    PubMed  CAS  Google Scholar 

  92. Christakou A, Robbins TW, Everitt BJ. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 2004;24:773–780.

    PubMed  CAS  Google Scholar 

  93. Chudasama Y, Robbins TW. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 2003;23:8771–8780.

    PubMed  CAS  Google Scholar 

  94. Granon S, Save E, Buhot MC, Poucet B. Effortful information processing in a spontaneous spatial situation by rats with medial prefrontal lesions. Behav Brain Res 1996;78:147–154.

    PubMed  CAS  Google Scholar 

  95. Agmo A, Belzung C. The role of subtypes of the opioid receptor in the anxiolytic action of chlordiazepoxide. Neuropharmacology 1998;37:223–232.

    PubMed  CAS  Google Scholar 

  96. Kopp C, Vogel E, Rettori MC, et al. Effects of melatonin on neophobic responses in different strains of mice. Pharmacol Biochem Behav 1999;63:521–526.

    PubMed  CAS  Google Scholar 

  97. Madani R, Kozlov S, Akhmedov A, et al. Impaired explorative behavior and neophobia in genetically modified mice lacking or overexpressing the extracellular serine protease inhibitor neuroserpin. Mol Cell Neurosci 2003;23:473–494.

    PubMed  CAS  Google Scholar 

  98. Morris RGM. Spatial localization does not require the presence of local cues. Learn Motiv 1981;12:239–260.

    Google Scholar 

  99. Cressant A, Granon S. Definition of a new maze paradigm for the study of spatial behavior in rats. Brain Res Brain Res Protoc 2003;12:116–124.

    PubMed  Google Scholar 

  100. Roullet P, Lassalle JM. Radial maze learning using exclusively distant visual cues reveals learners and nonlearners among inbred mouse strains. PhysiolBehav 1995;58:1189–1195.

    CAS  Google Scholar 

  101. File SE. Factors controlling measures of anxiety and responses to novelty in the mouse. Behav Brain Res 2001;125:151–157.

    PubMed  CAS  Google Scholar 

  102. Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 2002;22:2679–2689.

    PubMed  CAS  Google Scholar 

  103. Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 1996;54:21–30.

    PubMed  CAS  Google Scholar 

  104. Durkin TP, Beaufort C, Leblond L, Maviel T. A 5-arm maze enables parallel measures of sustained visuo-spatial attention and spatial working memory in mice. Behav Brain Res 2000;116:39–53.

    PubMed  CAS  Google Scholar 

  105. Geyer MA, McIlwain KL, Paylor R. Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 2002;7:1039–1053.

    PubMed  CAS  Google Scholar 

  106. Kemner C, Oranje B, Verbaten MN, van Engeland H. Normal P50 gating in children with autism. J Clin Psychiatry 2002;63:214–217.

    PubMed  Google Scholar 

  107. Archer J. Tests for emotionality in rats and mice: a review. Anim Behav 1973;21:205–235.

    PubMed  CAS  Google Scholar 

  108. Sarkisian MR. Overview of the current animal models for human seizure and epileptic disorders. Epilepsy Behav 2001;2:201–216.

    PubMed  Google Scholar 

  109. Stevenson RE, Schroer RJ, Skinner C, Fender D, Simensen RJ. Autism and macrocephaly. Lancet 1997;349:1744–1745.

    PubMed  CAS  Google Scholar 

  110. Bigler ED, Tate DF, Neely ES, et al. Temporal lobe, autism, and macrocephaly. Am J Neuroradiol 2003;24:2066–2076.

    PubMed  Google Scholar 

  111. Steiner CE, Guerreiro MM, Marques-de-Faria AP. On macrocephaly, epilepsy, autism, specific facial features, and mental retardation. Am J Med Genet 2003;120A:564–565.

    Google Scholar 

  112. Bolton PF, Roobol M, Allsopp L, Pickles A. Association between idiopathic infantile macrocephaly and autism spectrum disorders. Lancet 2001;358:726–727.

    PubMed  CAS  Google Scholar 

  113. Miles JH, Hadden LL, Takahashi TN, Hillman RE. Head circumference is an independent clinical finding associated with autism. Am J Med Genet 2000;95:339–350.

    PubMed  CAS  Google Scholar 

  114. Fidler DJ, Bailey JN, Smalley SL. Macrocephaly in autism and other pervasive developmental disorders. Dev Med Child Neurol 2000; 42:737–740.

    PubMed  CAS  Google Scholar 

  115. Palmen SJ, Van Engeland H. Review on structural neuroimaging findings in autism. J Neural Transm 2004;111:903–929.

    PubMed  CAS  Google Scholar 

  116. Sokol DK, Edwards-Brown M. Neuroimaging in autistic spectrum disorder (ASD). J Neuroimaging 2004;14:8–15.

    PubMed  Google Scholar 

  117. Brambilla P, Hardan A, di Nemi SU, et al. Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull 2003;61:557–569.

    PubMed  Google Scholar 

  118. Di Martino A, Castellanos FX. Functional neuroimaging of social cognition in pervasive developmental disorders: a brief review. Ann NY Acad Sci 2003;1008:256–260.

    PubMed  Google Scholar 

  119. Boddaert N, Zilbovicius M. Functional neuroimaging and childhood autism. Pediatr Radiol 2002;32:1–7.

    PubMed  Google Scholar 

  120. Zilbovicius M, Boddaert N, Belin P, et al. Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography. Am J Psychiatry 2000;157:1988–1993.

    PubMed  CAS  Google Scholar 

  121. Boddaert N, Belin P, Chabane N, et al. Perception of complex sounds: abnormal pattern of cortical activation in autism. Am J Psychiatry 2003;160:2057–2060.

    PubMed  Google Scholar 

  122. Small SA, Wu EX, Bartsch D, et al. Imaging physiologic dysfunction of individual hippocampal subregions in humans and genetically modified mice. Neuron 2000;28:653–64.

    PubMed  CAS  Google Scholar 

  123. Barnea-Goraly N, Kwon H, Menon V, et al. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 2004;55:323–326.

    PubMed  Google Scholar 

  124. Raymond GV, Bauman ML, Kemper TL. Hippocampus in autism: a Golgi analysis. Acta Neuropathologica 1996;91:117–119.

    PubMed  CAS  Google Scholar 

  125. Ahlsen G, Rosengren L, Belfrage M, et al. Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiatry 1993;33:734–743.

    PubMed  CAS  Google Scholar 

  126. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001;57:1618–1628.

    PubMed  CAS  Google Scholar 

  127. Laumonnier F, Bonnet-Brihault F, Gomot M, et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 2004;74:552–557.

    PubMed  CAS  Google Scholar 

  128. Comoletti D, De Jaco A, Jennings LL, et al. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci 2004;24:4889–4893.

    PubMed  CAS  Google Scholar 

  129. Chih B, Afridi SK, Clark L, Scheiffele P. Disorder-associated mutations lead to functional inactivation of neuroligins. Hum Mol Genet 2004;13:1471–1477.

    PubMed  CAS  Google Scholar 

  130. Pastinen T, Kurg A, Metspalu A, Peltonen L, Syvanen AC. Minisequencing—a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Research 1997;7:606–614.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bourgeron, T., Jamain, S., Granon, S. (2006). Animal Models of Autism. In: Fisch, G.S., Flint, J. (eds) Transgenic and Knockout Models of Neuropsychiatric Disorders. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-058-4_8

Download citation

Publish with us

Policies and ethics