Skip to main content

Mitochondrial Ion Channels

  • Chapter
Mitochondria

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

  • 2354 Accesses

Abstract

The maintenance of a large electrochemical driving force for protons across the mitochondrial inner membrane is essential for the production of ATP through oxidative phosphorylation. At face value, the opening of energy dissipating ion channels in the mitochondria would be unfavorable for energy transduction, but a wealth of evidence now indicates that selective (and some non-selective) ion channels may become active under various physiological or pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akar FG, Aon MA, Tomaselli GF, O’Rourke B (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115: 3527–35

    Article  CAS  PubMed  Google Scholar 

  • Aon MA, Cortassa S, Akar FG, O’Rourke B (2006) Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta 1762: 232–40

    Google Scholar 

  • Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278: 44735℃44

    Article  CAS  PubMed  Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2004) Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci U S A 101: 4447–52

    Article  CAS  PubMed  Google Scholar 

  • Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci USA 101: 11880–5

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, MolkentinJD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–62

    Article  CAS  PubMed  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P(2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280: 18558–61

    Article  CAS  PubMed  Google Scholar 

  • Beavis AD (1992) Properties of the inner membrane anion channel in intact mitochondria. J Bioenerg Biomembr 24: 77–90

    Article  CAS  PubMed  Google Scholar 

  • Beavis AD, Powers M (2004) Temperature dependence of the mitochondrial inner membrane anion channel: the relationship between temperature and inhibition by magnesium. J Biol Chem 279: 4045–50

    Article  CAS  PubMed  Google Scholar 

  • Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466: 130–4

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267: 2934–9

    CAS  PubMed  Google Scholar 

  • Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276: 21482–8

    Article  CAS  PubMed  Google Scholar 

  • Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS (2005) Type1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717: 1–10

    Article  CAS  PubMed  Google Scholar 

  • Billman GE, Englert HC, Scholkens BA (1998) HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part II: effects on susceptibility to ventricular fibrillation induced by myocardial ischemia in conscious dogs. J Pharmacol Exp Ther 286: 1465–73

    CAS  PubMed  Google Scholar 

  • Borecky J, Jezek P, D. Siemen D (1997) 108-pS channel in brown fat mitochondria might be identical to the inner membrane anion channel.J Biol Chem 272: 19282–9

    CAS  PubMed  Google Scholar 

  • Bragadin M, Pozzan T, Azzone GF (1979) Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18: 5972–8

    Article  CAS  PubMed  Google Scholar 

  • Brierley GP, Jurkowitz M, K. Scott KM, Merola AJ (1971) Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations. Arch Biochem Biophys 147: 545–56

    Article  CAS  PubMed  Google Scholar 

  • Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L(2004) Toward linking structure with function in ATP-sensitive K+channels. Diabetes 53 Suppl 3: S104–12

    Article  Google Scholar 

  • Cao CM, Chen M, Wong TM (2005a) The K(Ca) channel as a trigger for the cardioprotection induced by kappa-opioid receptor stimulation –its relationship with protein kinase C. Br J Pharmacol 145: 984–91

    Article  CAS  Google Scholar 

  • Cao CM, Xia Q, Gao Q, Chen M, Wong TM (2005b) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 312: 644–50

    Article  CAS  Google Scholar 

  • Chutkow WA, Samuel V, Hansen PA, Pu J, Valdivia CR, Makielski JC, Burant CF (2001) Disruption of Sur2-containing K(ATP) channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci USA 98: 11760–4

    Article  CAS  PubMed  Google Scholar 

  • Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62: 79–109

    Article  CAS  PubMed  Google Scholar 

  • Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84: 2734–55

    Article  CAS  PubMed  Google Scholar 

  • Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J87: 2060–73

    Article  CAS  PubMed  Google Scholar 

  • Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, M. Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97: 329–36

    Article  CAS  PubMed  Google Scholar 

  • Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290: H1808–H1817

    Article  PubMed  CAS  Google Scholar 

  • Demin OV, Kholodenko BN, Skulachev VP (1998) A model of O2.-generation in the complex III of the electron transport chain. Mol Cell Biochem 184: 21–33

    Article  CAS  PubMed  Google Scholar 

  • Denton RM, McCormack JG (1990) Ca2+ as a second messenger within mitochondria of the heart and other tissues. Ann Rev Physiol52: 451–66

    Article  CAS  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: Fixing a hole. Cardiovasc Res 70: 191–199

    Article  CAS  PubMed  Google Scholar 

  • Diwan JJ (1985) Ba2+ uptake and the inhibition by Ba2+ of K+ flux into rat liver mitochondria. J Membr Biol 84: 165–71

    Article  CAS  PubMed  Google Scholar 

  • Douglas MG, Cockrell RS (1974) Mitochondrial cation-hydrogen ion exchange. Sodium selective transport by mitochondria and submitochondrial particles. J Biol Chem 249: 5464–71

    CAS  PubMed  Google Scholar 

  • Ferreira GC, Pedersen PL (1993) Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges. J Bioenerg Biomembr 25: 483–92

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Zhang SZ, Cao CM, Bruce IC, Xia Q (2005) The mitochondrial permeability transition pore and the Ca2+-activated K+ channel contribute to the cardioprotection conferred by tumor necrosisfactor-alpha. Cytokine 32: 199–205

    Article  CAS  PubMed  Google Scholar 

  • Garlid KD (1996) Cation transport in mitochondria– the potassium cycle. Biochim Biophys Acta 1275: 123–6

    Article  PubMed  Google Scholar 

  • Garlid KD, Beavis AD (1986) Evidence for the existence of an inner membrane anion channel in mitochondria. Biochim Biophys Acta853: 187–204

    CAS  PubMed  Google Scholar 

  • Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606: 1–21

    Article  CAS  PubMed  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray MH, Darbenzio RB, D’ Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotectiveeffect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–82

    CAS  PubMed  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA (1996) the mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 271: 8796–9

    Article  CAS  PubMed  Google Scholar 

  • Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, Weizman A (1999) Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev 51: 629–50

    CAS  PubMed  Google Scholar 

  • Ghosh S, Standen NB, Galinanes M (2000) Evidence for mitochondrial KATP channels as effectors of human myocardial preconditioning. Cardiovasc Res 45: 934–40

    Article  CAS  PubMed  Google Scholar 

  • Grover GJ, Garlid KD (2000) ATP-Sensitive potassium channels: are view of their cardioprotective pharmacology. J Mol Cell Cardiol32: 677–95

    Article  CAS  PubMed  Google Scholar 

  • Grover GJ, D’ Alonzo AJ, Garlid KD, Bajgar R, Lodge NJ, Sleph PG, Darbenzio RB, Hess TA, Smith MA, Paucek P. Atwal KS (2001) Pharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther 297: 1184-92

    CAS  PubMed  Google Scholar 

  • Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG (1989) Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 251: 98–104

    CAS  PubMed  Google Scholar 

  • Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S, Terzic A (2003) Knockout of Kir 6.2 negates ischemic preconditioning-induced protection of myocardial energetics. Am J Physiol Heart Circ Physiol 284: H2106–13

    CAS  PubMed  Google Scholar 

  • Gunter KK, Gunter TE (1994) Transport of calcium by mitochondria. J Bioenerg Biomembr 26: 471–85

    Article  CAS  PubMed  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–86

    CAS  PubMed  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1: 401–8

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP (1987) The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin andCa2+. Biochem J 244: 159–64

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61: 372–85

    Article  CAS  PubMed  Google Scholar 

  • Hansford RG, Lehninger AL (1972) The effect of the coupled oxidation of substrate on the permeability of blow fly flight-musclemitochondria to potassium and other cations. Biochem J 126: 689–700

    CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251: 5069–77

    CAS  PubMed  Google Scholar 

  • Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352: 244–7

    Article  CAS  PubMed  Google Scholar 

  • Jezek P, Jezek J (2003) Sequence anatomy of mitochondrial anion carriers. FEBS Lett 534: 15–25

    Article  CAS  PubMed  Google Scholar 

  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman DB, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113: 1535–49

    CAS  PubMed  Google Scholar 

  • Jung DW, Baysal K, Brierley GP (1995) The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem 270: 672–8

    Article  CAS  PubMed  Google Scholar 

  • Jung DW, Chavez E, Brierley GP (1977) Energy-dependent exchange ofK+ in heart mitochondria. K+ influx. Arch Biochem Biophys 183: 452–9

    Article  CAS  PubMed  Google Scholar 

  • Jung DW, Farooqui T, Utz E, Brierley GP (1984) Effects of quinine on K+ transport in heart mitochondria. J Bioenerg Biomembr 16: 379–90

    Article  CAS  PubMed  Google Scholar 

  • Kinnally KW, Zorov DB, Antonenko YN, Snyder SH, McEnery MW, TedeschiH (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci USA 90: 1374–8

    Article  CAS  PubMed  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature427: 360–4

    Article  CAS  PubMed  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature427: 461–5

    Article  CAS  PubMed  Google Scholar 

  • Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol 428: 311–4

    Article  CAS  PubMed  Google Scholar 

  • Lamping KA, Gross GJ (1985) Improved recovery of myocardial segment function following a short coronary occlusion in dogs by nicorandil, a potential new anti anginal agent, and nifedipine. J Cardiovasc Pharmacol 7: 158–66

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ren G, O’Rourke B, Marban E, Seharaseyon J (2001) Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol Pharmacol59: 225–30

    CAS  PubMed  Google Scholar 

  • Liu Y, Sato T, O’Rourke B, Marban E (1998) mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97: 2463–9

    CAS  PubMed  Google Scholar 

  • Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW (2005) The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 37: 155–64

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434: 652–8

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics 3, Third ed., Academic Press, London

    Google Scholar 

  • Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–8

    Article  CAS  PubMed  Google Scholar 

  • Ockaili R, Emani VR, Okubo S, Brown M, Krottapalli K, Kukreja RC(1999) Opening of mitochondrial KATP channel induces early anddelayed cardioprotective effect: role of nitric oxide. Am J Physiol277: H2425–34

    CAS  PubMed  Google Scholar 

  • Ockaili R, Salloum F, Hawkins J, Kukreja RC (2002) Sildenafil(Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 283: H1263–9

    CAS  PubMed  Google Scholar 

  • Ohya S, Kuwata Y, Sakamoto K, Muraki K, Imaizumi Y (2005) Cardioprotective effects of estradiol include the activation of large-conductance Ca(2+)-activated K(+) channels in cardiac mitochondria. Am J Physiol Heart Circ Physiol 289: H1635–42

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg O, Cohen MV, Downey JM (2003) Mitochondrial K(ATP) channels in preconditioning. J Mol Cell Cardiol 35: 569–75

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke B (2000) Pathophysiological and protective roles of mitochondrial ion channels. J Physiol 529 Pt 1: 23–36

    Article  PubMed  Google Scholar 

  • O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94: 420–32

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke B, B. Ramza BM, Marban E (1994) Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265: 962–6

    Article  PubMed  Google Scholar 

  • Otani H (2004) Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal6: 449–69

    Article  CAS  PubMed  Google Scholar 

  • Pain T, X. Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channel striggers the preconditioned state by generating free radicals. Circ Res 87: 460–6

    CAS  PubMed  Google Scholar 

  • Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD(1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267: 26062–9

    CAS  PubMed  Google Scholar 

  • Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155: 725–31

    Article  CAS  PubMed  Google Scholar 

  • Rousset S, Alves-Guerra MC, Mozo Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53 Suppl 1: S130–5

    Article  Google Scholar 

  • Sasaki N, Murata M, Guo Y, Jo SH, Ohler A, Akao M, O’Rourke B, XiaoRP, Bolli R, Marban E (2003) MCC-134, a single pharmacophore, openssurface ATP-sensitive potassium channels, blocks mitochondrial ATP-sensitive potassium channels, and suppresses preconditioning. Circulation 107: 1183–8

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Sato T, Ohler A, O’Rourke B, Marban E (2000) Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101: 439–45

    CAS  PubMed  Google Scholar 

  • Sato T, Costa AD, Saito T, Ogura T, Ishida H, Garlid KD, Nakaya H(2006) Bepridil, an antiarrhythmic drug, opens mitochondrial KATP channels, blocks sarcolemmal KATP channels, and confers cardioprotection. J Pharmacol Exp Ther 316: 182–8

    Article  CAS  PubMed  Google Scholar 

  • Sato T, O’Rourke B, Marban E (1998) Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83: 110–4

    CAS  PubMed  Google Scholar 

  • Sato T, Saito T, Saegusa N, Nakaya H (2005) MitochondrialCa2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A.Circulation 111: 198–203

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Sasaki N, Seharaseyon J, O’Rourke B, Marban E (2000) Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection.Circulation 101: 2418–23

    CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is acomponent of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102: 12005–10

    Article  CAS  PubMed  Google Scholar 

  • Seino S, Miki T (2003) Physiological and pathophysiological roles ofATP-sensitive K+ channels. Prog Biophys Mol Biol 81: 133–76

    Article  CAS  PubMed  Google Scholar 

  • Shintani Y, Node K, Asanuma H, Sanada S, Takashima S, Asano Y, LiaoY, Fujita M, A Hirata A, Shinozaki Y, Fukushima T, Nagamachi Y, Okuda H, Kim J, Tomoike H, Hori M, Kitakaze M (2004) Opening of Ca2+-activated K+ channels is involved in ischemic preconditioning in canine hearts. J Mol Cell Cardiol 37: 1213–8

    CAS  PubMed  Google Scholar 

  • Sorgato MC, Keller BU, Stuhmer W (1987) Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature 330: 498–500

    Article  CAS  PubMed  Google Scholar 

  • Stowe DF, Aldakkak M, Camara AK, Riess ML, Heinen A, Varadarajan SG, Jiang MT (2006) Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation Am J Physiol Heart Circ Physiol 290: H434–40

    Google Scholar 

  • Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem 109: 269–83

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, Nakaya H(2003) Cardioprotective effect of diazoxide is mediated byactivation of sarcolemmal but not mitochondrial ATP-sensitivepotassium channels in mice. Circulation 107: 682–5

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, TamagawaM, Seino S, Marban E, Nakaya H (2002) Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury inmice. J Clin Invest 109: 509–16

    CAS  PubMed  Google Scholar 

  • Szabo I, Bernardi P, Zoratti M (1992) Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 267: 2940–6

    CAS  PubMed  Google Scholar 

  • Szewczyk A, Mikolajek B, Pikula S, Nalecz MJ (1993) Potassium channel openers induce mitochondrial matrix volume changes via activation of ATP-sensitive K+ channel. Pol J Pharmacol 45: 437–43

    CAS  PubMed  Google Scholar 

  • Tanno M, Miura T, Tsuchida A, Miki T, Nishino Y, Ohnuma Y, andShimamoto K (2001) Contribution of both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels to infarct size limitation by K(ATP)channel openers: differences from preconditioning in the role ofsarcolemmal K(ATP) channels. Naunyn Schmiedebergs Arch Pharmacol364: 226–32

    Article  CAS  PubMed  Google Scholar 

  • Tanonaka K, Taguchi T, Koshimizu M, Ando T, Morinaka T, Yogo T, Konishi F, Takeo S (1999) Role of an ATP-sensitive potassium channel opener, YM934, in mitochondrial energy production in ischemic/reperfused heart. J Pharmacol Exp Ther 291: 710–6

    CAS  PubMed  Google Scholar 

  • Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca(2+)activation of heart mitochondrial oxidative phosphorylation: role ofthe F(0) /F(1) -ATPase. Am J Physiol Cell Physiol 278: C423–35

    CAS  PubMed  Google Scholar 

  • Uchiyama Y, Otani H, Wakeno M, Okada T, Uchiyama T, Sumida T, KidoM, Imamura H, Nakao S, Shingu K (2003) Role of mitochondrial KATP channels and protein kinase C in ischaemic preconditioning. Clin Exp Pharmacol Physiol 30: 426–36

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yin C, Xi L, Kukreja RC (2004) Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/Rinjury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287: H2070–7

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B(2002) Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science 298: 1029–33

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Ji X, and Boysen PG (2004) Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol 286: H1433–40

    Article  CAS  PubMed  Google Scholar 

  • Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE, Terzic A (2002) Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 99: 13278–83

    Article  CAS  PubMed  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenonaccompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192: 1001–14

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Rourke, B. (2007). Mitochondrial Ion Channels. In: Schaffer, S.W., Suleiman, M.S. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_10

Download citation

Publish with us

Policies and ethics