Skip to main content
Log in

Transport of calcium by mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The identification of intramitochondrial free calcium ([Ca2+ m) as a primary metabolic mediator [see Hansford (this volume) and Gunter, T. E., Gunter, K. K., Sheu, S.-S., and Gavin, C. E. (1994)Am. J. Physiol. 267, C313–C339, for reviews] has emphasized the importance of understanding the characteristics of those mechanisms that control [Ca2+]m. In this review, we attempt to update the descriptions of the mechanisms that mediate the transport of Ca2+ across the mitochondrial inner membrane, emphasizing the energetics of each mechanism. New concepts within this field are reviewed and some older concepts are discussed more completely than in earlier reviews. The mathematical forms of the membrane potential dependence and concentration dependence of the uniporter are interpolated in such a way as to display the convenience of consideringV max to be an explicit function of the membrane potential. Recent evidence for a transient rapid conductance state of the uniporter is discussed. New evidence concerning the energetics and stoichiometries of both Na+-dependent and Na+-independent efflux mechanisms is reviewed. Explicit mathematical expressions are used to describe the energetics of the system and the kinetics of transport via each Ca2+ transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerman, K. E. O. (1977a).J. Bioenerg. Biomembr. 9 65–72.

    Google Scholar 

  • Åkerman, K. E. O. (1977b).J. Bioenerg. Biomembr. 9 141–149.

    Google Scholar 

  • Åkerman, K. E. O. (1978a).Arch. Biochem. Biophys. 189 256–262.

    Google Scholar 

  • Åkerman, K. E. O. (1978b).FEBS Lett. 93 293–296.

    Google Scholar 

  • Åkerman, K. E. O., Wilkström, M. K. E., and Saris, N.-E. (1977).Biochim. Biophys. Acta 464 287–294.

    Google Scholar 

  • Antonio, R. V., da Silva, L. P., and Vercesi, A. E. (1991).Biochim. Biophys. Acta 1056 250–258.

    Google Scholar 

  • Azzone, G. F., Bragadin, M., Pozzan, T., and Dell'Antone, P. (1976).Biochim. Biophys. Acta 459 96–109.

    Google Scholar 

  • Baker, P. F., and Schlaepfer, W. W. (1978).J. Physiol. 276 103–125.

    Google Scholar 

  • Baysal, K., Brierley, G. P., Novgorodov, S., and Jung, D. W. (1991).Arch. Biochem. Biophys. 291 383–389.

    Google Scholar 

  • Baysal, K., Jung, D. W., Gunter, K. K., Gunter, T. E., and Brierley, G. P., (1994).Am. J. Physiol. 266 C800-C808.

    Google Scholar 

  • Beatrice, M. C., Stiers, D. L., and Pfeiffer, D. R. (1982).J. Biol. Chem. 257 7161–7171.

    Google Scholar 

  • Bernardi, P., and Azzone, G. F. (1979).Eur. J. Biochem. 102 555–562.

    Google Scholar 

  • Bernardi, P., and Azzone, G. F. (1982).FEBS Lett. 139 13–16.

    Google Scholar 

  • Berridge, M. J. (1993).Nature (London) 361 315–325.

    Google Scholar 

  • Berridge, M. J., and Galione, A. (1988).FASEB J. 2 3074–3082.

    Google Scholar 

  • Berridge, M. J. and Moreton, R. B. (1991).Curr. Biol. 1 296–297.

    Google Scholar 

  • Bragadin, M., Pozzan, T., and Azzone, G. F. (1979a).Biochemistry 18 5972–5978.

    Google Scholar 

  • Bragadin, M., Pozzan, T., and Azzone, G. F. (1979b),FEBS Lett. 104 347–351.

    Google Scholar 

  • Brand, M. D. (1985a).Biochem. J. 225 413–419.

    Google Scholar 

  • Brand, M. D. (1985b).Biochem. J. 229 161–166.

    Google Scholar 

  • Brand, M. D., and Murphy, M. P. (1987).Biol. Rev. Cambridge Philos. Soc. 62 141–193.

    Google Scholar 

  • Brand, M. D., Reynafarje, B., and Lehninger, A. L. (1976).J. Biol. Chem. 251 5670–5679.

    Google Scholar 

  • Brierley, G. P., and Jung, D. W. (1988).Adv. Exp. Med. Biol. 232 47–57.

    Google Scholar 

  • Brierley, G. P., Davis, M., and Jung, D. W. (1987).Arch. Biochem. Biophys. 253 322–332.

    Google Scholar 

  • Bygrave, F. L. (1977).Curr. Top. Bioenerg. 6 259–318.

    Google Scholar 

  • Bygrave, F. L., Reed, K. C., and Spencer, T. E. (1971).Nature New Biol. 230 89.

    Google Scholar 

  • Carafoli, E. (1965).Biochim. Biophys. Acta 97 99–106.

    Google Scholar 

  • Chance, B. (1965).J. Biol. Chem. 240 2729–2748.

    Google Scholar 

  • Chiesi, M., Rogg, H., Eichenberger, K., Gazzotti, P., and Carafoli, E. (1987).Biochem. Pharmacol. 36 2735–2740.

    Google Scholar 

  • Cobbold, P. H., and Rink, T. J. (1987).Biochem. J. 248 313–328.

    Google Scholar 

  • Crompton, M. (1990). InIntracellular Calcium Regulation (F. Bronner, ed.), Alan R. Liss, New York, pp. 181–209.

    Google Scholar 

  • Crompton, M., Capano, M., and Carafili, E. (1976a).Eur. J. Biochem. 69 453–462.

    Google Scholar 

  • Crompton, M., Sigel, E., Salzmann, M., and Carafoli, E. (1976b).Eur. J. Biochem. 69 429–434.

    Google Scholar 

  • Crompton, M., Künzi, M., and Carafoli, E. (1977).Eur. J. Biochem. 79 549–558.

    Google Scholar 

  • Crompton, M., Moser, R., Lüdi, H., and Carafoli, E. (1978).Eur. J. Biochem. 82 25–31.

    Google Scholar 

  • Crompton, M., Heid, I., and Carafoli, E. (1980).FEBS Lett. 115 257–259.

    Google Scholar 

  • DeLuca, H. F., and Engstrom, G. W. (1961).Proc. Natl. Acad. Sci. USA 47 1744–1750.

    Google Scholar 

  • Drahota, Z., Gazzotti, P., Carafoli, E., and Rossi, C. S. (1969).Arch. Biochem. Biophys. 130 267–273.

    Google Scholar 

  • Farber, J. L. (1981).Life Sci. 29 1289–1295.

    Google Scholar 

  • Fiskum, G. (1985).Cell Calcium 6 25–37.

    Google Scholar 

  • Fiskum, G., and Cockrell, R. S. (1978).FEBS Lett. 92 125–128.

    Google Scholar 

  • Fiskum, G., and Lehninger, A. L. (1979).J. Biol. Chem. 254 6236–6239.

    Google Scholar 

  • Fiskum, G., Reynafarje, B., and Lehninger, A. L. (1979).J. Biol. Chem. 254 6288–6295.

    Google Scholar 

  • Garlid, K. D. (1988).Adv. Exp. Med. Biol. 232 37–46.

    Google Scholar 

  • Gavin, C. E. (1991). “A role for the mitochondrion in manganese toxicity”, Ph.D. Thesis, University of Rochester, Rochester, New York.

    Google Scholar 

  • Gavin, C. E., Gunter, K. K., and Gunter, T. E. (1990).Biochem. J. 266 329–334.

    Google Scholar 

  • Gavin, C. E., Gunter, K. K., and Gunter, T. E. (1991).Anal. Biochem. 192 44–48.

    Google Scholar 

  • Gilon, P., Shepherd, R. M., and Henquin, J.-C. (1993).J. Biol. Chem. 268 22265–22268.

    Google Scholar 

  • Goldstone, T. P., and Crompton, M. (1982).Biochem. J. 204 369–371.

    Google Scholar 

  • Gunter, K. K., and Gunter, T. E. (1985).Biophys. J. 47, 415a.

  • Gunter, K. K., Rosier, R. N., Tucker, D. A., and Gunter, T. E. (1979). InCalcium Binding Proteins and Cell Function (Wasserman, R. H., Corradino, R. P., Carafoli, E., Kretsinger, R. H., MacLennan, D. H., and Siegel, F. L., eds.), Elsevier/North-Holland, Amsterdam, London, New York, pp. 498–500.

    Google Scholar 

  • Gunter, K. K., Zuscik, M. J. and Gunter T. E. (1991).J. Biol. Chem. 266 21640–21648.

    Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258 C755-C786.

    Google Scholar 

  • Gunter, T. E., and Puskin, J. S. (1972).Biophys. J. 12 625–635.

    Google Scholar 

  • Gunter, T. E., Rosier, R. N., Tucker, D. A., and Gunter, K. K. (1978a).Ann. NY. Acad. Sci. 307 246–247.

    Google Scholar 

  • Gunter, T. E., Gunter, K. K., Puskin, J. S., and Russell, P. R. (1978b).Biochemistry 17 339–345.

    Google Scholar 

  • Gunter, T. E., Chace, J. H., Puskin, J. S. and Gunter, K. K. (1983).Biochemistry 22 6341–6351.

    Google Scholar 

  • Gunter, T. E., Wingrove, D. E., Banerjee, S., and Gunter, K. K. (1988).Adv. Exp. Med. Biol. 232 1–14.

    Google Scholar 

  • Gunter, T.E., Zuscik, M. J., Puzas, J. E., Gunter, K. K., and Rosier, R. N. (1990).Cell Calcium 11 445–457.

    Google Scholar 

  • Gunter, T. E., Gunter, K. K., Sheu, S.-S., and Gavin, G. E. (1994).Am. J. Physiol. 267 C313-C339.

    Google Scholar 

  • Hansford, R. G. (1985).Rev. Physiol. Biochem. Pharmacol. 102 1–72.

    Google Scholar 

  • Hatefi, Y., Stiggall, D. L., Galante, Y., and Hanstein, W. G. (1974).Biochem. Biophys. Res. Commum. 61 313–321.

    Google Scholar 

  • Hayat, L. H., and Crompton, M. (1985).FEBS Lett. 182 281–286.

    Google Scholar 

  • Hayat, L. H., and Crompton, M. (1987).Biochem. J. 244 533–538.

    Google Scholar 

  • Heaton, G. M., and Nicholls, D. G. (1976).Biochem. J. 156 635–646.

    Google Scholar 

  • Heffron, J. J. A., and Harris, E. J. (1981).Biochem. J. 194 925–929.

    Google Scholar 

  • Henderson, P. J. F. (1972).Biochem. J. 127 321–333.

    Google Scholar 

  • Hutson, S. M. (1977).J. Biol. Chem. 252 4539–4545.

    Google Scholar 

  • Hutson, S. M., Pfeiffer, D. R., and Lardy, H. A. (1976).J. Biol. Chem. 251 5251–5258.

    Google Scholar 

  • Igbavboa, U., and Pfeiffer, D. R. (1988).J. Biol. Chem. 263 1405–1412.

    Google Scholar 

  • Igbavboa, U., and Pfeiffer, D. R. (1991a).Biochim. Biophys. Acta 1059 339–347.

    Google Scholar 

  • Igbavboa, U., and Pfeiffer, D. R. (1991b).J. Biol. Chem. 266 4283–4287.

    Google Scholar 

  • Jensen, B. D., Gunter, K. K., and Gunter, T. E. (1986).Arch. Biochem. Biophys. 248 305–323.

    Google Scholar 

  • Jurkowitz, M. S., Geisbuhler, T., Jung, D. W., and Brierley, G. P. (1983a).Arch. Biochem. Biophys. 223 120–128.

    Google Scholar 

  • Jurkowitz, M. S., Altschuld, R. A., Brierley, G. P., and Cragoe, E. J., Jr., (1983b).FEBS Lett. 162 262–265.

    Google Scholar 

  • Kapoor, S. C., van Rossum, G. D. V., O'Neill, K. J., and Mercorella, I. (1985).Biochem. Pharmacol. 34 1439–1448.

    Google Scholar 

  • Kapùs, A., Szászi, K., Káldi, K., Ligeti, E., and Fonyó, A. (1991).FEBS Lett. 282 61–64.

    Google Scholar 

  • Kröner, H. (1986a).Arch. Biochem. Biophys. 251 525–535.

    Google Scholar 

  • Kröner, H. (1986b).Biol. Chem. Hoppe-Seyler 367 483–493.

    Google Scholar 

  • Kröner, H. (1988).Arch. Biochem. Biophys. 267 205–210.

    Google Scholar 

  • Lehninger, A. L. (1972). InMolecular Basis of Electron Transport (Schultz, J., and Cameron, B. F., eds.), Academic Press, New York, London, pp. 133–151.

    Google Scholar 

  • Lehninger, A. L., Carafoli, E., and Rossi, C. S. (1967).Adv. Enzymol. 29 259–320.

    Google Scholar 

  • Leikin, Yu. N., and Gonsalves, M. P. P. (1986).Dokl. Akad. Nauk SSSR 290 1011–1014.

    Google Scholar 

  • Leisey, J. R., Grotyohann, L. W., Scott, D. A., and Scaduto, R. C. Jr., (1993).Am. J. Physiol. 265 H1203-H1208.

    Google Scholar 

  • Lenzen, S., Münster, W., and Rustenbeck, I. (1992).Biochem. J. 286 597–602.

    Google Scholar 

  • Li, W., Shariat-Madar, Z., Powers, M., Sun, X., Lane, R. D., and Garlid, K. D. (1992).J. Biol. Chem. 267 17983–17989.

    Google Scholar 

  • Ligeti, E., and Lukács, G. L. (1984).J. Bioenerg. Biomembr. 16 101–113.

    Google Scholar 

  • Lötscher, H.-R., Winterhalter, K. H., Carafoli, E., and Richter, C. (1980).J. Biol. Chem. 255 9325–9330.

    Google Scholar 

  • Luft, J. H. (1971).Anat. Rec. 171 347–368.

    Google Scholar 

  • Lukács, G. L., and Fonyó, A. (1985).Biochim. Biophys. Acta 809 160–166.

    Google Scholar 

  • Lukács, G. L., and Fonyó, A. (1986).Biochim. Biophys. Acta 858 125–134.

    Google Scholar 

  • McCormack, J. G., and Denton, R. M. (1993).Biochem. Soc. Trans. 21 793–798.

    Google Scholar 

  • McMillin-Wood, J., Wolkowicz, P. E., Chu, A., Tate, C. A., Goldstein, M. A., and Entman, M. L. (1980).Biochim. Biophys. Acta 591 251–265.

    Google Scholar 

  • Meissner, G., and Henderson, J. S. (1987).J. Biol. Chem. 262 3065–3073.

    Google Scholar 

  • Mela, L. (1969).Biochemistry 8 2481–2486.

    Google Scholar 

  • Mitchell, P. (1966a).Biol. Rev. Cambridge Philos. Soc. 41 445–502.

    Google Scholar 

  • Mitchell, P. (1966b).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Research, Bodmin, England.

    Google Scholar 

  • Murphy, A. N., and Fiskum, G. (1988).Adv. Exp. Med. Biol. 232 139–150.

    Google Scholar 

  • Nicchitta, C. V., and Williamson, J. R. (1984).J. Biol. Chem. 259 12978–12983.

    Google Scholar 

  • Petersen, C. C. H., Petersen, O. H. and Berridge, M. J. (1993).J. Biol. Chem. 268 22262–22264.

    Google Scholar 

  • Pfeiffer, D. R., Hutson, S. M., Kauffman, R. F., and Lardy, H. A. (1976).Biochemistry 15 2690–2697.

    Google Scholar 

  • Pfeiffer, D. R., Palmer, J. W., Beatrice, M. C., and Stiers, D. L. (1983). InThe Biochemistry of Metabolic Processes (Lennon, D. F. L., Stratman, F. W., and Zahlten, R. N., eds.), Elsevier/North-Holland, New York, pp. 67–80.

    Google Scholar 

  • Puskin, J. S., Gunter, T. E., Gunter, K. K. and Russell, P. R. (1976).Biochemistry 15 3834–3842.

    Google Scholar 

  • Reed, K. C., and Bygrave, F. L. (1974a).Biochem. J. 138 239–252.

    Google Scholar 

  • Reed, K. C., and Bygrave, F. L. (1974b).Biochem. J. 140 143–155.

    Google Scholar 

  • Reed, K. C., and Bygave, F. L. (1975).Eur. J. Biochem. 55 497–504.

    Google Scholar 

  • Rizzuto, R., Bernardi, P., Favaron, M., and Azzone, G. F. (1987).Biochem. J. 246 271–277.

    Google Scholar 

  • Romslo, I., and Flatmark, T. (1973).Biochim. Biophys. Acta 325 38–46.

    Google Scholar 

  • Rosier, R. N., Tucker, D. A., Meerdink, S., Jain, I., and Gunter, T. E. (1981).Arch. Biochem. Biophys. 210 549–564.

    Google Scholar 

  • Rottenberg, H., and Marbach, M. (1990a).Biochim. Biophys. Acta 1016 77–86.

    Google Scholar 

  • Rottenberg, H., and Marbach, M. (1990b).FEBS Lett. 274 65–68.

    Google Scholar 

  • Rottenberg, H., and Marbach, M. (1991).Life Sci. 48 987–994.

    Google Scholar 

  • Saris, N.-E. L. (1987).Acta Chem. Scand. B41 79–82.

    Google Scholar 

  • Saris, N.-E. L., and Bernardi, P. (1983).Biochim. Biophys. Acta 725 19–24.

    Google Scholar 

  • Scarpa, A., and Azzone, G. F. (1970).Eur. J. Biochem. 12 328–335.

    Google Scholar 

  • Scarpa, A., and Graziotti, P. (1973).J. Gen. Physiol. 62 756–772.

    Google Scholar 

  • Schellenberg, G. D., Anderson, L., Cragoe, E. J., Jr., and Swanson, P. D. (1985).Cell Calcium 6 431–447.

    Google Scholar 

  • Selwyn, M. J., Dawson, A. P., and Dunnett, S. J. (1970).FEBS Lett. 10 1–5.

    Google Scholar 

  • Senior, A. E. (1988).Physiol. Rev. 68 177–231.

    Google Scholar 

  • Sheu, S.-S., and Blaustein, M. P. (1992). InThe Heart and Cardiovascular System, Scientific Foundations Vol. 2 (Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M., and Morgan, H. E., eds.), Raven Press, New York, pp. 903–943.

    Google Scholar 

  • Sordahl, L. A., LaBelle, E. F., and Rex, K. A. (1984).Am. J. Physiol. 246 C172-C176.

    Google Scholar 

  • Sparagna, G. C., Gunter, K. K., and Gunter, T. E. (1994).Anal. Biochem. 219 96–103.

    Google Scholar 

  • Tashmukhamedov, B. A., Gazelgans, A. I., Mamatkulov, Kh., and Makhmudova, E. M. (1972).FEBS Lett. 28 239–245.

    Google Scholar 

  • Vainio, H., Mela, L., and Chance, B. (1970).Eur. J. Biochem. 12 387–391.

    Google Scholar 

  • Vasington, F. D., Gazzotti, P., Tiozzo, R., and Carafoli, E. (1972).Biochim. Biophys. Acta 256 43–54.

    Google Scholar 

  • Vercesi, A., Reynafarje, B., and Lehninger, A. L. (1978).J. Biol. Chem. 253 6379–6385.

    Google Scholar 

  • Vinogradov, A., and Scarpa, A. (1973).J. Biol. Chem. 248 5527–5531.

    Google Scholar 

  • Wingrove, D. E., and Gunter, T. E., (1986a).J. Biol. Chem. 261 15159–15165.

    Google Scholar 

  • Wingrove, D. E., and Gunter, T. E. (1986b).J. Biol. Chem. 261 15166–15171.

    Google Scholar 

  • Wingrove, D. E., Amatruda, J. M., and Gunter, T. E. (1984).J. Biol. Chem. 259 9390–9394.

    Google Scholar 

  • Wolkowicz, P. E., Michael, L. H., Lewis, R. M., and McMillin-Wood, J. (1983).Am. J. Physiol. 244 H644-H651.

    Google Scholar 

  • Wyssbrod, H. R., Scott, W. N., Brodsky, W. A., and Schwarz, I. L. (1971). InHandbook of Neurochemistry, Vol. 5,Metabolic Turnover in the Nervous System, Part B (Lajtha, A., ed.), Plenum Press, New York, London, pp. 683–819.

    Google Scholar 

  • Ying, W.-L., Emerson, J., Clarke, M. J., and Sanadi, D. R. (1991).Biochemistry 30 4949–4952.

    Google Scholar 

  • Zoccarato, F., and Nicholls, D. G. (1981).FEBS Lett. 128 275–277.

    Google Scholar 

  • Zoccarato, F., and Nicholls, D. (1982).Eur. J. Biochem. 127 333–338.

    Google Scholar 

  • Zuscik, M. J. (1993). “Parathyroid hormone activation of signalling pathways in growth plate chondrocytes”, Ph.D. thesis, University of Rochester, Rochester, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunter, K.K., Gunter, T.E. Transport of calcium by mitochondria. J Bioenerg Biomembr 26, 471–485 (1994). https://doi.org/10.1007/BF00762732

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762732

Key words

Navigation