Skip to main content

TRPV1 as a Molecular Transducer for Salt and Water Homeostasis

  • Chapter
Molecular Sensors for Cardiovascular Homeostasis

Abstract

The transient receptor potential (TRP) family of ion channels was first characterized in Drosophila, where the trp gene was found to be required for visual transduction in a phospholipase C (PLC) dependent process.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montell, C., The TRP superfamily of cation channels, Sci. STKE re3 (2005).

    Google Scholar 

  2. Ramsey, S., Delling, M., and Clapham, D., An introduction to TRP channels, Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Clapham, D.E., TRP channels as cellular sensors, Nature 426, 517–524 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Padinjat, R., and Andrews, S., TRP channels at a glance, J. Cell Sci. 117(24), 5707–5709 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Hellwig, N., Albrecht, N., Harteneck, C., Schultz, G., and Schaefer, M., Homo-and heteromeric assembly of TRPV channel subunits, J. Cell Sci. 118, 917–928 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. Smith, G.D., Gunthorpe, M.J., Kelsell, R.E., Hayes, P.D., Reilly, P., Facer, P., Wright, J.E., Jerman, J.C., Walhin, J.P., Ool, L., Egerton, J., Charles, K.J., Smart, D., Randall, A.D., Anand, P., and Davis, J.P., TRPV3 is a temperature-sensitive vanilloid receptor-like protein, Nature 418, 186–190 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Liedtke, W., TRPV4 as osmosensor: a transgenic approach, Pflügers Arch–Eur. J. Physiol. 451, 176–180 (2005).

    Article  CAS  Google Scholar 

  8. Nijenhuis, T., Hooenderop, J.G.J., and Bindels, R.J.M., TRPV5 and TRPV6 in Ca2 + (re)absorption: regulating Ca2 + entry at the gate, Pflügers Arch. Eur. J. Physiol. 451, 181–192 (2005).

    Article  CAS  Google Scholar 

  9. Reid, G., ThermoTRP channels and cold sensing: what are they up to? Pflügers Arch. Eur. J. Physiol. 451, 250–263 (2005).

    Article  CAS  Google Scholar 

  10. Nilius, B., and Voets, T., TRP channels: a TR(I)P through a world of multifunctional cation channels, Pflügers Arch. Eur. J. Physiol. 451, 1–10 (2005).

    Article  CAS  Google Scholar 

  11. Clapham, D.E., Montell, C., Schultz, G., and Julius, D., The TRP ion channel family, IUPHAR Compendium, TRP Channels(2002).

    Google Scholar 

  12. Montell, C., Birnbaumer, L., and Flockerzi, V., The TRP channels, a remarkably functional family, Cell 108, 595–598 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. Desai, B.N., and Clapham, D.E., TRP channels and mice deficient in TRP channels, Pflügers Arch. Eur. J. Physiol. 451, 11–18 (2005).

    Article  CAS  Google Scholar 

  14. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D., The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature 389, 816–824 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Jordt, S., McKemy, D.D., and Julius, D., Lessons from peppers and peppermint: the molecular logic of thermosensation, Curr. Opin. Neurobio. 13, 487–492 (2003).

    Article  CAS  Google Scholar 

  16. Agopyan, N., Head, J., Yu, S., and Simon, S.A., TRPV1 receptors mediate particulate matter-induced apoptosis, Am. J. Physiol. Lung Cell Mol. Physiol. 283, L563–L572 (2004).

    Article  Google Scholar 

  17. Birder, L.A., Kanai, A.J., de Groat, W.C., Kiss, S., Nealen, M.L., Burke, N.E., Dineley, K.E., Watkins, S., Reynolds, I.J., and Caterina, M.J., Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1, Nature Neurosci. 5(9), 856–860 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Lyall, V., Heck, G.L., Vinnikova, A.K., Ghosh, S., Phan, T.T., Alam, R.I. Russell, O.F., Malik, S.A., Bigbee, J.W., and DeSimone, J.A., The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant, J. Physiol. 558(1), 147–159 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Planells-Cases, R., Garcia-Sanz, N., Morenilla-Palao, C., and Ferrer-Montiel, A., Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia, Pflügers Arch. Eur. J. Physiol. 451, 151–159 (2005).

    Article  CAS  Google Scholar 

  20. O'Neil, R.G., and Brown, R.C., The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli, News Physiol. Sci. 18, 226–231 (2003).

    PubMed  Google Scholar 

  21. Gunthorpe, M.J., Benham, C.D., Randall, A., and Davis, J.B., The diversity in the vanilloid (TRPV) receptor family of ion channels, Trends Pharmaco.l Sci. 23(4), 183–191 (2002).

    Article  CAS  Google Scholar 

  22. Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D., The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron 21, 531–543 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. Ferrer-Montiel, A., Garcia-Martinez, C., Morenilla-Palao, C., Garcia-Sanz, N., Fernandez-Carvajal, A., Fernandez-Ballester, G., and Planells-Cases, R., Molecular architecture of the vanilloid receptor, Eur. J. Biochem. 271, 1820–1826 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. Schumacher, M.A., Moff, I., Sudanagunta, S.P., and Levine, J.D., Molecular cloning of an N-terminal splice variant of the capsaicin receptor, J. Biol. Chem. 275(4), 2756–2762 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Tominaga, M., and Tominaga, T., Structure and function of TRPV1, Pflügers Arch.–Eur. J. Physiol. 451, 143–150 (2005).

    Article  CAS  Google Scholar 

  26. Vlachova, V., Teisinger, J., Susankova, K., Lyfenko, A., Ettrich, R., and Vyklicky, I., Functional role of C terminal cytoplasmic tail of rat vanilloid receptor 1, J. Neurosci. 23(4), 1340–1350 (2003).

    PubMed  CAS  Google Scholar 

  27. Numazaki, M., Tominaga, T., Takeuchi, K., Murayama, N., Toyooka, H., and Tominaga, M., Structural determinant of TRPV1 desensitization interacts with calmodulin, Proc. Natl. Acad. Sci. USA 100(13), 8002–8006 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Kedei, N., Szabo, T., Lile, J.D., Treanor, J.J., Olah, Z., Iadarola, M.J., and Blumberg, P.M., Analysis of the native quaternary structure of vanilloid receptor 1, J. Biol. Chem. 276(30), 28613–28619 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. Kuzhikandathil, E.V., Wang, H., Szabo, T., Morozova, N., Blumberg, P.M., and Oxford, G.S., Functional analysis of capsaicin receptor (vanilloid receptor subtype 1) multimerization and agonist responsiveness using a dominant negative mutation, J. Neurosci. 21(22), 8697–8706 (2001).

    PubMed  CAS  Google Scholar 

  30. Garcia-Sanz, N., Fernandez-Carvajal, A., Morenilla-Palao, C., Planells-Cases, R., Fajardo-Sanchez, E., Fernandez-Ballester, G., and Ferrer-Montiel, A., Identification of a tetramerization domain in the C terminus of the vanilloid receptor, J. Neurosci. 24(23), 5307–5314 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Xue, Q., Yu, Y., Trilk, S.L., Jong, B.E., and Schumacher, M.A., The genomic organization of the gene encoding the vanilloid receptor: evidence for multiple splice variants, Genomics 76(1–3), 14–20 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Caterina, M.J., Julius, D., The vanilloid receptor: a molecular gateway to the pain pathway, Annu. Rev. Neurosci. 24, 487–517 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. Ma, Q.P., Expression of capsaicin receptor (VR1) by myelinated primary afferent neurons in rats, Neurosci. Lett. 319, 87–90 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi, K., Fukuoka, T., Obata, K., Yamanaka, H., Dai, Y., Tokunaga, A., and Noguchi, K., Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with A/C-fibers and co-localization Trk receptors, J. Comp. Neurol. 493, 596–606 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. Michael, G.J., and Priestley, J.V., Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy, J. Neurosci. 19(5), 1844–1854 (1999).

    PubMed  CAS  Google Scholar 

  36. Guo, A., Vulchanova, L., Wang, J., Li, X., and Elde, R., Immunocytochemical localization of the vanilloids receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites, Eur. J. Neurosci. 11, 946–958 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. Funakoshi, K., Nakano, M., Atobe, Y., Goris, R.C., Kadota, T., and Yazama, F., Differential development of TRPV1-expressing sensory nerves in peripheral organs, Cell Tissue Res. 323, 27–41 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Szallasi, A., Vanilloid (capsaicin) receptors in health and disease, Am. J. Clin. Pathol. 118, 110–121 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Sanchez, J.F., Krause, J.E., and Cortright, D.N., The distribution and regulation of vanilloid receptor VR1 and VR1 5' splice variant RNA expression in rat, Neurosci. 107(3), 373–381 (2001).

    Article  CAS  Google Scholar 

  40. Birder, L.A., Kanai, A.J., de Groat, W.C., Kiss, S., Nealen, M.L., Burke, N.E., Dineley, K.E., Watkins, S., Reynolds, I.J., and Caterina, M.J., Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells, Proc. Natl. Acad. Sci. USA 98(23), 13396–13401 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. Avelino, A., Cruz, C., Nagy, I., and Cruz, F., Vanilloid receptor 1 expression in the rat urinary tract, Neuroscience 109(4) 787–798 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. McIntyre, P., McLatchie, L.M., Chambers, A., Phillips, E., Clarke, M., Savidge, J., Toms, C., Peacock, M., Shah, K., Winter, J., Weerasakera, N., Webb, M., Rang, H.P., Bevan, S., and James, I.F., Pharmacological differences between the human and rat vanilloid receptor 1 (VR1), Br. J. Pharmacol. 132, 1084–1094 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. Zvara, A., Bencsik, P., Fodor, G., Csont, T., Hackler, L., Jr., Dux, M., Furst, S., Jancs, G., Puskas, L.G., and Ferdinandy, P., Capsaicin-sensitive sensory neurons regulate myocardial function and gene expression pattern of rat hearts: a DNA microarray study, FASEB J. 20, 160–162 (2006).

    PubMed  CAS  Google Scholar 

  44. Nozawa, Y., Nishihara, K., Yamamoto, A., Nakano, M., Ajioka, H., and Matsuura, N., Distribution and characterization of vanilloid receptors in the rat stomach, Neurosci. Lett. 309, 33–36 (2001).

    Article  PubMed  CAS  Google Scholar 

  45. Br, T., Maurer, M., Modarres, S., Lewin, N.E., Brodie, C., Ács, G., Ács, P., Paus, R., and Blumberg, P.M., Characterization of functional vanilloid receptors expressed by mast cells, Blood 91, 1332–1340 (1998).

    Google Scholar 

  46. Yang, X., Lin, M., McIntosh, L.S., and Sham, J.S.K., Functional expression of transient receptor potential melastatin- (TRPM) and vanilloid-related (TRPV) channels in pulmonary arterial and aortic smooth muscle, Am. J. Physiol. Lung Cell Mol. Physiol. 290(6), L1267–1276 (2005).

    Article  CAS  Google Scholar 

  47. Denda, M., Fuziwara, S., Inoue, K., Denda, S., Akamatsu, H., Tomitaka, A., and Matsunaga, K., Immunoreactivity of VR1 on epidermal keratinocyte of human skin, Biochem. Biophys. Res. Commun. 285, 1250–1252 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. Inoue, K., Koizumi, S., Fuziwara, S., Denda, S., Inoue, K., and Denda, M., Functional vanilloid receptors in cultured normal human epidermal keratinocytes, Biochem. Biophys. Res. Commun. 291, 124–129 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. Ständer, S., Moormann, C., Schumacher, M., Buddenkotte, J., Artuc, M., Shpacovitch, V., Brzoska, T., Lippert, U., Henz, B.M., Luger, T.A., Metze, D., and Steinhoff, M., Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells and epithelial cells of appendage structures, Exp. Dermatol. 13, 129–139 (2004).

    Article  PubMed  Google Scholar 

  50. Apostolidis, A., Brady, C.M., Yiangou, Y., Davis, J., Fowler, C.J., and Anand, P., Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin, Urology 65, 400–405, (2005).

    Article  PubMed  Google Scholar 

  51. Cortright, D.N., Crandall, M., Sanchez, J.F., Zou, T., Krause, J.E., and White, G., The tissue distribution and functional characterization of human VR1, Biochem. Biophys. Res. Comm. 281, 1183–1189 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. Mezey, E., Toth, Z.E., Cortright, D.N., Arzubi, M.K., Krause, J.E., Elde, R., Guo, A., Blumberg, P.M., and Szallasi, A., Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human, Proc. Natl. Acad. Sci. USA 97, 3655–3660 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. Nagy, I., Santha, P., Jancso, G., and Urban, L., The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology, Eur. J. Pharmacol. 500, 351–369 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. Caterina, M.J., Vanilloid receptors take a TRP beyond the sensory afferent, Pain 105, 5–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Ross, R.A., Anandamide and vanilloid TRPV1 receptors, Br. J. Pharmacol. 140, 790–801 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. Zygmunt, P.M., Petersson, J., Andersson, D.A., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D., and Hogestatt, E.D., Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide, Nature 400, 452–456 (1999).

    Article  PubMed  CAS  Google Scholar 

  57. Smart, D., Gunthorpe, M.J., Jerman, J.C., Nasir, S., Gray, J., Muir, A.I., Chambers, J.K., Randall, A.D., and Davis, J.B., The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1), Br. J. Pharmacol. 129, 227–230 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. Olah, Z., Karai, L., and Iadarola, M.J., Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1, J. Biol. Chem. 276(33), 31163–31170 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. Van der Stelt, M., Trevisani, M., Vellani, V., de Petrocellis, L., Moriello, A.S., Campi, B., McNaughton, P., Geppetti, P., and Di Marzo, V., Anandamide acts as an intracellular messenger amplifying Ca2 + influx via TRPV1 channels, Eur. Mol. Bio. Org. J. 24, 3026–3037 (2005).

    Google Scholar 

  60. Malinowska, B., Kwolek, G., and Gothert, M., Anandamide and methanandamide induce both vanilloid VR1- and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats, Naunyn-Schmiedeberg's Arch. Pharmacol. 364, 562–569 (2001).

    Article  CAS  Google Scholar 

  61. Ralevic, V., Kendall, D.A., Randall, M.D., Zygmunt, P.M., Movahed, P., and Hogestatt, E.D., Vanilloid receptors on capsaicin-sensitive sensory nerves mediate relaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arteries, Br. J. Pharmacol. 130, 1483–1488 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. Huang, S.M., and Walker, J.M., Enhancement of spontaneous and heat-evoked activity in spinal nociceptive neurons by the endovanilloid/endocannabinoid N-arachidonyldopamine (NADA), J. Neurophysiol. 95, 1207–1212 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. Huang, S.M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T.J., Krey, J.F., Chu, C.J., Miller, J.D., Davies, S.N., Geppetti, P., Walker, J.M., and Di Marzo, V., An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors, Proc. Natl. Acad. Sci. USA 99(12), 8400–8405 (2002).

    Article  PubMed  CAS  Google Scholar 

  64. Appendino, G., De Petrocellis, L., Trevisani, M., Minassi, A., Daddario, N., Moriello, A.S., Gazzieri, D., Ligresti, A., Campi, B., Fontana, G., Pinna, C., Geppetti, P., and Di Marzo, V., Development of the first ultra-potent “capsaicinoid” agonist at transient receptor potential vanilloid type 1 (TRPV1) channels and its therapeutic potential, J. Pharmacol. Exp. Ther. 312(2), 561–570 (2005).

    Article  PubMed  CAS  Google Scholar 

  65. Hu, H., Gu, Q., Wang, C., Colton, C.K., Tang, J., Kinoshita-Kawada, M., Lee, L., Wood, J.D., and Zhu, M.X., 2-Aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3, J. Biol. Chem. 279(34), 35741–35748 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. Gu, Q., Lin, R., Hu, H., Zhu, M.X., and Lee, L., 2-aminoethoxydiphenyl borate stimulates pulmonary C neurons via the activation of TRPV channels, AJP–Lung 288, 932–941 (2005).

    Google Scholar 

  67. Ahern, G.P., Activation of TRPV1 by the satiety factor oleoylethanolamide, J. Biol. Chem. 278(33), 30429–30434 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. Chu, C.J., Huang, S.M., De Petrocellis, L., Bisogno, T., Ewing, S.A., Miller, J.D., Zipkin, R.E., Daddario, N., Appendino, G., Di Marzo, V., and Walker, J.M., N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia, J. Biol. Chem. 278(16), 13633–13639 (2003).

    Article  PubMed  CAS  Google Scholar 

  69. Trevisani, M., Smart, D., Gunthorpe, M.J., Tognetto, M., Barbieri, M., Campi, B., Amadesi, S., Gray, J., Jerman, J.C., Brough, S.J., Owen, D., Smith, G.D., Randall, A.D., Harrison, S., Bianchi, A., Davis, J.B., and Geppetti, P., Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1, Nature Neurosci. 5(6), 546–551 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. Gazzieri, D., Trevisani, M., Tarantini, F., Bechi, P., Masotti, G., Gensini, G.F., Castellani, S., Marchionni, N., Geppetti, P., and Harrison, S., Ethanol dilates coronary arteries and increases coronary flow via transient receptor potential vanilloid 1 and calcitonin gene-related peptide, Cardiovasc. Res. 70, 589–599 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Trevisani, M., Smart, D., Gunthorpe, M.J., Tognetto, M., Barbieri, M., Campi, B., Amadesi, S., Gray, J., Jerman, J.C., Brough, S.J., Owen, D., Smith, G.D., Randall, A.D., Harrison, S., Bianchi, A., Davis, J.B., and Geppetti, P., Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1, Nature Neurosci. 5(6), 546–551 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. Hwang, S.W., Cho, H., Kwak, J., Lee, S., Kang, C., Jung, J., Cho, S., Min, K.H., Suh, Y., Kim, D., and Oh, U., Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances, Proc. Natl. Acad. Sci. USA 97(11), 6155–6160 (2000).

    Article  PubMed  CAS  Google Scholar 

  73. Scotland, R.S., Chauhan, S., Davis, C., De Felipe, C., Hunt, S., Kabir, J., Kotsonis, P., Oh, U., and Ahluwalia, A., Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation, Circ. Res. 95, 1027–1034 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. Nagy, I., and Rang, H., Noxious heat activates all capsaicin-sensitive and also a sub-population of capsaicin-insensitive dorsal root ganglion neurons, Neurosci. 88(4), 995–997 (1999).

    Article  CAS  Google Scholar 

  75. Welch, J.M., Simon, S.A., and Reinhart, P.H., The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat, Proc. Natl. Acad. Sci. USA 97(25), 13889–13894 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. Tominaga, M., Wada, M., and Masu, M., Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia, Proc. Natl. Acad. Sci. USA 98(12), 6951–6956 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. Kikuno, S., Taguchi, K., Iwamoto, N., Yamano, S., Cho, A.K., Froines, J.R., and Kumagai, Y., 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea, Tox. Appl. Pharmacol. 210, 47–54 (2006).

    Article  CAS  Google Scholar 

  78. Wardle, K.A., Ranson, J., and Sanger, G.J., Pharmacological characterization of the vanilloid receptor in the rat dorsal spine cord, Br. J. Pharmacol. 121, 1012–1016 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. Rigoni, M., Trevisani, M., Gazzieri, D., Nadaletto, R., Tognetto, M., Creminon, C., Davis, J.B., Campi, B., Amadesi, S., Geppetti, P., and Harrison, S., Neurogenic responses mediated by vanilloid receptor-1 (TRPV1) are blocked by the high affinity antagonist, iodo-resiniferatoxin, Br. J. Pharmacol. 138, 977–985 (2003).

    Article  PubMed  CAS  Google Scholar 

  80. Xi, N., Bo, Y., Doherty, E.M., Fotsch, C., Gavva, N.R., Han, N., Hungate, R.W., Klionsky, L., Liu, Q., Tamir, R., Xu, S., Treanor, J.J.S., and Norman, M.H., Synthesis and evaluation of thiazole carboxamides as vanilloid receptor 1 (TRPV1) antagonists, Bioorg. Med. Chem. Ltrs. 15, 5211–5217 (2005).

    Article  CAS  Google Scholar 

  81. Kouhen, R.E., Surowy, C.S., Bianchi, B.R., Neelands, T.R., McDonald, H.A., Niforatos, W., Gomtsyan, A., Lee, C., Honore, P., Sullivan, J.P., Jarvis, M.F., and Faltynek, C.R., A-425619 1-Isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea, a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat and acid, J. Pharmacol. Exp. Therap. 314(1), 400–409 (2005).

    Article  CAS  Google Scholar 

  82. McGaraughty, S., Chu, K.L., Faltynek, C.R., and Jarvis, M.F., Systemic and site-specific effects of A-425619, a selective TRPV1 receptor antagonist, on wide dynamic range neurons in CFA-treated and uninjured rats, J. Neurophysiol. 95, 18–25 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. Xi, N., Bo, Y., Doherty, E.M., Fotsch, C., Gavva, N.R., Han, N., Hungate, R.W., Klionsky, L., Liu, Q., Tamir, R., Xu, S., Treanor, J.J.S., and Norman, M.H., Synthesis and evaluation of thiazole carboxamides as vanilloid receptor 1 (TRPV1) antagonists, Bioorg. Med. Chem. Ltrs. 15, 5211–5217 (2005).

    Article  CAS  Google Scholar 

  84. Marquez, N., De Petrocellis, L., Caballero, F.J., Macho, A., Schiano-Moriello, A., Minassi, A., Appendino, G., Munoz, E., and Di Marzo, V., Iodinated N-acylvanillamines: potential “multiple-target” anti-inflammatory agents acting via the inhibition of t-cell activation and antagonism at vanilloid TRPV1 channels, Mol. Pharmacol. 69(4), 1373–1382 (2006).

    Article  PubMed  CAS  Google Scholar 

  85. Szallasi, A., and Appendino, G., Vanilloid receptor TRPV1 antagonists as the next generation of painkillers. Are we putting the cart before the horse? J. Med. Chem. 47(11), 2717–2723 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. Jung, J., Lee, S., Hwang, S.W., Cho, H., Shin, J., Kang, Y., Kim, S., and Oh, U., Agonist recognition sites in the cytosolic tails of vanilloid receptor 1, J. Biol. Chem. 277(46), 44448–44454 (2002).

    Article  PubMed  CAS  Google Scholar 

  87. Jordt, S., Tominaga, M., and Julius, D., Acid potentiation of the capsaicin receptor determined by a key extracellular site, Proc. Natl. Acad. Sci. USA 97(14), 8134–8139 (2000).

    Article  PubMed  CAS  Google Scholar 

  88. Gavva, N.R., Klionsky, L., Qu, Y., Shi, L., Tamir, R., Edenson, S., Zhang, T.J., Viswanadhan, V.N., Toth, A., Pearce, L.V., Vanderah, T.W., Porreca, F., Blumberg, P.M., Lile, J., Sun, Y., Wild, K., Louis, J., and Treanor, J.J.S., Molecular determinants of vanilloid sensitivity in TRPV1, J. Biol. Chem. 279(19), 20283–20295 (2004).

    Article  PubMed  CAS  Google Scholar 

  89. Jordt, S., Julius, D., Molecular basis for species-specific sensitivity to “hot” chili peppers, Cell 108, 421–430 (2002).

    Article  PubMed  CAS  Google Scholar 

  90. Sutton, K.G., Garrett, E.M., Rutter, A.R., Bonnert, T.P., Jarolimek, W., and Seabrook, G.R., Functional characterization of the S512Y mutant vanilloid human TRPV1 receptor, Br. J. Pharm. 146, 702–711 (2005).

    Article  CAS  Google Scholar 

  91. Jhaveri, M.D., Elmes, S.J., Kendall, D.A., and Chapman, V., Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats, Eur. J. Neurosci. 22(2), 361–70 (2005).

    Article  PubMed  Google Scholar 

  92. Premkumar, L.S., and Ahern, G.P., Induction of vanilloid receptor channel activity by protein kinase C, Nature 408, 985–990 (2000).

    Article  PubMed  CAS  Google Scholar 

  93. Mandadi, S., Numazaki, M., Tominaga, M., Bhat, M.B., Armati, P.J., and Roufogalis, B.D., Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels, Cell Calcium 35, 471–478 (2004).

    Article  PubMed  CAS  Google Scholar 

  94. Numazaki, M., Tominaga, T., Toyooka, H., and Tominaga, M., Direct phosphorylation of capsaicin receptor VR1 by protein kinase C and identification of two target serine residues, J. Biol. Chem. 277(16), 13375–13378 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Bhave, G., Ju, H., Glauner, K.S., Zhu, W., Wang, H., Brasier, D.J., Oxford, G.S., and Gereau, R.W., IV, Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1), Proc. Natl. Acad. Sci. USA 100(21), 12480–12485 (2003).

    Article  PubMed  CAS  Google Scholar 

  96. Liu, B., Ma, W., Ryu, S., and Qin, F., Inhibitory modulation of distal C-terminal on protein kinase C-dependent phosphor-regulation of rat TRPV1 receptors, J. Physiol. 560(3), 627–638 (2004).

    Article  PubMed  CAS  Google Scholar 

  97. Chuang, H., Prescott, E.D., Kong, H., Shields, S., Jordt, S., Basbaum, A.I., Chao, M.V., and Julius, D., Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4, 5)P2-mediated inhibition, Nature 411, 957–962 (2001).

    Article  PubMed  CAS  Google Scholar 

  98. Prescott, E.D., and Julius, D., A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity, Science 300, 1284–1288 (2003).

    Article  PubMed  CAS  Google Scholar 

  99. Morenilla-Palao, C., Planells-Cases, R., Garcia-Sanz, N., and Ferrer-Montiel, A., Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity, J. Biol. Chem. 279(24), 25665–25672 (2004).

    Article  PubMed  CAS  Google Scholar 

  100. Sugiura, T., Tominaga, M., Katsuya, H., and Mizumura, K., Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1, J. Neurophysiol. 88, 544–548 (2002).

    PubMed  CAS  Google Scholar 

  101. Tang, H., Inoue, A., Oshita, K., and Nakata, Y., Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons, Eur. J. Pharmacol. 498, 37–43 (2004).

    Article  PubMed  CAS  Google Scholar 

  102. Obreja, O., Rathee, P.K., Lips, K.S., Distler, C., and Kress, M., IL-1ss potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C, FASEB J. 16, 1497–1503 (2002).

    Article  PubMed  CAS  Google Scholar 

  103. Lopshire, J.C., and Nicol, G.D., The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies, J. Neurosci. 18(16), 6081–6092 (1998).

    PubMed  CAS  Google Scholar 

  104. Mohapatra, D.P., and Nau, C., Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway, J. Biol. Chem. 278(50), 50080–50090 (2003).

    Article  PubMed  CAS  Google Scholar 

  105. Rathee, P.K., Distler, C., Obreja, O., Neuhuber, W., Wang, G.K., Wang, S.Y., Nau, C., and Kress, M., PKA/AKAP/VR-1 module: A common link of Gs-mediated signaling to thermal hyperalgesia, J. Neurosci. 22(11), 4740–4745.

    Google Scholar 

  106. Docherty, R.J., Yeats, J.C., Bevan, S., and Boddeke, H.W.G.M., Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurons from adult rats, Flügers Arch.–Eur. J. Physiol. 431, 828–837 (1996).

    CAS  Google Scholar 

  107. Mohapatra, D.P., and Nau, C., Regulation of Ca2 + -dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase, J. Biol. Chem. 280(14), 13424–13432 (2005).

    Article  PubMed  CAS  Google Scholar 

  108. Jung, J., Shin, J.S., Lee, S., Hwang, S.W., Koo, J., Cho, H., and Oh, U., Phosphorylation of vanilloid receptor 1 by Ca2 +/calmodulin-dependent kinase II regulates its vanilloid binding, J. Biol. Chem. 279(8), 7048–7054 (2004).

    Article  PubMed  CAS  Google Scholar 

  109. Wang, C., Hu, H., Colton, C.K., Wood, J.D., and Zhu, M.X., An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of Trpv1 channels, J. Biol. Chem. 279(36), 37423–37430 (2004).

    Article  PubMed  CAS  Google Scholar 

  110. Tian, W., Fu, Y., Wang, D.H., and Cohen, D.M., Regulation of TRPV1 by a novel renally expressed rat TRPV1 splice variant, AJP-Renal 290, 117–126 (2006).

    Article  CAS  Google Scholar 

  111. Rosenbaum, T., Gordon-Shaag, A., Munari, M., and Gordon, S.E., Ca2 +/Calmodulin modulates TRPV1 activation by capsaicin, J. Gen. Physiol. 123, 53–62 (2004).

    Article  PubMed  CAS  Google Scholar 

  112. Amaya, F., Oh-hashi, K., Naruse, Y., Iijima, N., Ueda, M., Shimosato, G., Tominaga, M., Tanaka, Y., and Tanaka, M., Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons, Brain Res. 963(1–2), 190–196 (2003).

    Article  PubMed  CAS  Google Scholar 

  113. Kim, S., Kang, C., Shin, C.Y., Hwang, S.W., Yang, Y.D., Shim, W.S., Park, M., Kim, E., Kim, M., Kim, B., Cho, H., Shin, Y., and Oh, U., TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1, J. Neurosci. 26(9), 2403–2412 (2006).

    Article  PubMed  CAS  Google Scholar 

  114. Van Buren, J.J., Bhat, S., Rotello, R., Pauza, M.E., and Premkumar, L.S., Sensitization and translocation of TRPV1 by insulin and IGF-1, Mol. Pain 1, 17 (2005).

    Article  PubMed  CAS  Google Scholar 

  115. Vyklicky, L., Lyfenko, A., Susankova, K., Teisinger, J., and Vlachova, V., Reducing agent dithiothreitol facilitates activity of the capsaicin receptor VR-1, Neuroscience 111(3), 435–441 (2002).

    Article  PubMed  CAS  Google Scholar 

  116. Wang, D.H., and Li, J., Antihypertensive mechanisms underlying a novel salt-sensitive hypertensive model induced by sensory denervation, Hypertension 33(15), 499–503 (1999).

    PubMed  CAS  Google Scholar 

  117. Supowit, S.C., Ethridge, R.T., Zhao, H., Katki, K.A., and DiPette, D.J., Calcitonin gene-related peptide and substance P contribute to reduced blood pressure in sympathectomized rats, AJP-Heart 289, 1169–1175 (2005).

    Article  CAS  Google Scholar 

  118. van der Stelt, M., and Di Marzo, V., Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels, Eur. J. Biochem. 271, 1827–1834 (2004).

    Article  CAS  Google Scholar 

  119. Naeini, R.S., Witty, M., Seguela, P., and Bourque, C.W., An N-terminal variant of Trpv1 channel is required for osmosensory transduction, Nature Neurosci. 9(1), 93–98 (2006).

    Article  CAS  Google Scholar 

  120. Oliet, S.H., and Bourque, C.W., Mechanosensitive channels transducer osmosensitivity in supraoptic neurons, Nature 364, 341–343 (1993).

    Article  PubMed  CAS  Google Scholar 

  121. Winter, J., Dray, A., Wood, J.N., Yeats, J.C., and Bevan, S., Cellular mechanism of action of resiniferatoxin: a potent sensory neuron excitotoxin, Brain Res. 520, 13–40 (1990).

    Article  Google Scholar 

  122. Bevan, S., and Forbes, C.A., Membrane effects of capsaicin on rat dorsal root ganglion neurons in culture, J. Physiol. 398, 28 (1988).

    Google Scholar 

  123. Forbes, C.A., and Bevan, S., Single channels activated by capsaicin in patches of membrane from adult rat sensory neurons in culture, Neurosci. Lett. S3, 32 (1998).

    Google Scholar 

  124. Marsh, S.J., Stansfeld, C.E., Brown, D.A., Davey, R., and McCarthy, D., The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro, Neuroscience, 23, 275–289 (1987).

    Article  PubMed  CAS  Google Scholar 

  125. Wood, J.N., Winter, J., James, I.F., Rang, H.P., Yeats, J., and Bevan, S., Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture, J. Neurosci. 8, 3208–3220 (1988).

    PubMed  CAS  Google Scholar 

  126. Maggi, C.A., The pharmacological modulation of neurotransmitter release, in: Capsaicin in the Study of Pain, edited by J. Wood. Harcourt Brace & Company, New York, 1993, pp. 161–189.

    Google Scholar 

  127. Wimalawansa, S.J., Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials, Endocr. Rev. 17, 533–585 (1996).

    Article  PubMed  CAS  Google Scholar 

  128. Arendshorst, W.J., Cook, M.A., and Mills, I.H., Effect of substance P on proximal tubular reabsorption in the rat, Am. J. Physiol. 230, 1662–1667 (1976).

    PubMed  CAS  Google Scholar 

  129. Shekhar, Y.C., Anand, I.S., Sarma, R., Ferrari, R., Wahi, P.L., and Poole-Wilson, P.A., Effects of prolonged infusion of human alpha calcitonin gene-related peptide on hemodynamics, renal blood flow and hormone levels in congestive heart failure, Am. J. Cardiol. 67, 732–736 (1991).

    Article  PubMed  CAS  Google Scholar 

  130. Breimer, L.H., MacIntyre, I., and Zaidi, M., Peptides from the calcitonin genes: molecular genetics, structure, and function, Biochem. J. 255, 377–390 (1988).

    PubMed  CAS  Google Scholar 

  131. Preibisz, J.J., CGRP and regulation of human cardiovascular homeostasis, Am. J. Hypertens. 6, 434–450 (1993).

    PubMed  CAS  Google Scholar 

  132. Zaidi, M., Moonga, B.S., Bevis, P.J., Bascal, Z.A., and Breimer, L.H., The calcitonin gene peptides: biology and clinical relevance, Crit. Rev. Clin. Lab. Sci. 28, 109 (1999).

    Google Scholar 

  133. McEwan, J., Legon, S., Wimalawansa, S.J., Zaidi, M., Dollery, C.T., and MacIntyre, I., Calcitonin gene-related peptide: a review of its biology and relevance to the cardiovascular system, in: Endocrine Mechanisms in Hypertension, edited by J.H. Laragh, B.N. Brenner, and N.M. Kaplan. Raven Press, New York, 1989, p. 287.

    Google Scholar 

  134. Szallasi, A., and Blumberg, P.M., Vanilloid (capsaicin) receptors and mechanisms, Pharmacol. Rev. 51, 159–210 (1999).

    PubMed  CAS  Google Scholar 

  135. Wang, D.H., Wu, W., and Lookingland, K.J., Degeneration of capsaicin-sensitive sensory nerves leads to increased salt sensitivity through enhancement of sympathoexcitatory response, Hypertension 37, 440–443 (2001).

    PubMed  CAS  Google Scholar 

  136. Wang, D.H., Li, J.P., and Qiu, J.X., Salt sensitive hypertension induced by sensory denervation: Introduction of a new model. Hypertension (Rapid Communication) 32(4), 649–653 (1998).

    CAS  Google Scholar 

  137. Wang, D.H., and Zhao, Y.Z., Increased salt sensitivity induced by impairment of sensory nerves: is nephropathy the cause? J. Hypertens. 21(2), 403–409 (2003).

    Article  PubMed  CAS  Google Scholar 

  138. Li, J.P., and Wang, D.H., High salt induced-increase in blood pressure: Role of capsaicin-sensitive sensory nerves. J. Hypertens. 21(3), 577–582 (2003).

    Article  PubMed  CAS  Google Scholar 

  139. Zhu, Y., Wang, Y., and Wang, D.H., Diuresis and natriuresis caused by activation of VR1-positive sensory nerves in renal pelvis of rats, Hypertension 46(part 2), 992–997 (2005).

    Article  PubMed  CAS  Google Scholar 

  140. Li, J., and Wang, D.H., Function and regulation of the vanilloid receptor in rats fed a high salt diet, J. Hypertens 21, 1525–1530 (2003).

    Article  PubMed  CAS  Google Scholar 

  141. Wang, Y., Kaminski, N.E., and Wang, D.H., VR1-mediated depressor effects during high salt intake.: role of anandamide, Hypertension 46(part 2), 986–991 (2005).

    Article  PubMed  CAS  Google Scholar 

  142. Li, J.P., Kaminski, N.E., and Wang, D.H., Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor (VR1). Hypertension 41(2), 757–762 (2003).

    Article  PubMed  CAS  Google Scholar 

  143. Wang, Y., and Wang, D.H., A novel mechanixm contributing to development of dahl salt-sensitive hypertension. Role of the transient receptor potential vanilloid type 1, Hypertension 47 (part 2), 609–614 (2006).

    Article  PubMed  CAS  Google Scholar 

  144. Huang, Y., and Wang, D.H., Role of AT1 and AT2 receptor subtypes in salt sensitive hypertension induced by sensory denervation. J. Hypertension 19(10), 1841–1846 (2001).

    Article  CAS  Google Scholar 

  145. Huang, Y., and Wang, D.H., Role of the renin-angiotensin-aldosterone system in salt sensitive hypertension induced by sensory denervation. Am. J. Physiol. (Heart Circulatory Physiology) 281 (5), H2143–H2149 (2001).

    CAS  Google Scholar 

  146. Ye, D., and Wang, D.H., Function and regulation of endothelin receptor subtypes in salt sensitive hypertension induced by sensory nerve degeneration. Hypertension 39 (2 pt 2), 673–678 (2002).

    Article  PubMed  CAS  Google Scholar 

  147. Wang, Y.P., Chen, A.F., and Wang, D.H., Role of ETA receptor in salt sensitive hypertension induced by sensory nerve degeneration. Am. J. Physiol. (Heart Circulatory Physiology) 289, H2005–H2011 (2005).

    Article  CAS  Google Scholar 

  148. Song, W.Z., Chen, A., and Wang, D.H., Increased salt sensitivity induced by impairment of sensory nerves: role of superoxide. Acta Pharmacoogica. Sinica 25(12), 1626–1632 (2004).

    CAS  Google Scholar 

  149. Wang, D.H., The vanilloid receptor and hypertension, Acta Pharmacologica Sinica 26(3), 286–294 (2005).

    Article  PubMed  CAS  Google Scholar 

  150. Nilius, B., Voets, T., and Peters, J., TRP channels in disease, Sci. STKE 2005(295), re8, 2 (2005).

    Article  Google Scholar 

  151. Deng, P., and Li, Y., Calcitonin gene-related peptide and hypertension, Peptides 26, 1676–1685 (2005).

    Article  PubMed  CAS  Google Scholar 

  152. Wang, L.H., and Wang, D.H., Vanilloid receptor gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 112(23), 3617–3623 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wang, D.H., Sachs, J.R. (2007). TRPV1 as a Molecular Transducer for Salt and Water Homeostasis. In: Wang, D.H. (eds) Molecular Sensors for Cardiovascular Homeostasis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47530-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47530-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47528-8

  • Online ISBN: 978-0-387-47530-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics