Skip to main content

Role of Mechanical Stimulations in Directing Mesenchymal Stem Cell Adipogenesis

  • Chapter
  • First Online:
The Mechanobiology of Obesity and Related Diseases

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 16))

  • 1259 Accesses

Abstract

An increased recruitment of new preadipocytes from mesenchymal stem cell (MSC) sources to form adipocytes and deposit adipose tissue is one of the features of obesity. In this chapter, the role of mechanical extracellular environments in directing MSC adipogenic commitment and differentiation will be reviewed. It was recently highlighted that adipose cells and their precursor cells, including MSCs, are exposed in vivo to complex mechanical stimulations. Further, studies proposed that adipose cells are ‘mechanically sensitive and responsive’, which is a characteristic of traditionally well-established mechanoresponsive cells such as osteoblasts, chondrocytes, myoblasts, etc. While it is still in the early stage of ‘adipocyte mechanotransduction’ research, this chapter will review the data reported on the control of MSC fate decision to adipogenesis via utilizing mechanical cell stimulations (stretch, compression, fluid flow) and also via static mechanophysical signals from the cell culture substrate. Also, comparison of MSC adipogenesis with the osteogenesis, as attempted in many of these studies, will be reviewed. Determining extracellular mechanophysical conditions optimal to inhibit the MSC adipogenesis and revealing underlying molecular mechanistic pathways may significantly advance the strategy to deal with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, G.J., Darshan, D.: Small-molecule dissection of BMP signaling. Nat. Chem. Biol. 4, 15–16 (2008)

    Article  Google Scholar 

  2. Arnsdorf, E.J., Tummala, P., Kwon, R.Y., Jacobs, C.R.: Mechanically induced osteogenic differentiation: the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122, 546–553 (2009)

    Article  Google Scholar 

  3. Baron, R., Kneissel, M.: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013)

    Article  Google Scholar 

  4. Bennett, C.N., Ross, S.E., Longo, K.A., Bajnok, L., Hemati, N., Johnson, K.W., Harrison, S.D., MacDougald, O.A.: Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 277, 30998–31004 (2002)

    Article  Google Scholar 

  5. Bowers, R.R., Lane, M.D.: A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle 6, 385–389 (2007)

    Article  Google Scholar 

  6. Bowers, R.R., Kim, J.W., Otto, T.C., Lane, M.D.: Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc. Natl. Acad. Sci. U.S.A. 103, 13022–13027 (2006)

    Article  Google Scholar 

  7. Charoenpanich, A., Wall, M.E., Tucker, C.J., Andrews, D.M., Lalush, D.S., Dirschl, D.R., Loboa, E.G.: Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic nonors. Tissue Eng. Part A [Epub ahead of print] PMID:23927731

    Google Scholar 

  8. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    Article  Google Scholar 

  9. Chen, D., Zhao, M., Mundy, G.R.: Bone morphogenetic proteins. Growth Factors 22, 233–241 (2004)

    Article  Google Scholar 

  10. David, V., Martin, A., Lafage-Proust, M.H., Malaval, L., Peyroche, S., Jones, D.B., Vico, L., Guignandon, A.: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148, 2553–2562 (2007)

    Article  Google Scholar 

  11. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  12. Gortchacow, M., Terrier, A., Pioletti, D.P.: A flow sensing model for mesenchymal stromal cells using morphogen dynamics. Biophys. J. 104, 2132–2136 (2013)

    Article  Google Scholar 

  13. Gregory, C.A., Gunn, W.G., Reyes, E., Smolarz, A.J., Munoz, J., Spees, J.L., Prockop, D.J.: How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann. N. Y. Acad. Sci. 1049, 97–106 (2005)

    Article  Google Scholar 

  14. Gurkan, U.A., Akkus, O.: The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36, 1978–1991 (2008)

    Article  Google Scholar 

  15. Haasper, C., Jagodzinski, M., Drescher, M., Meller, R., Wehmeier, M., Krettek, C., Hesse, E.: Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp. Toxicol. Pathol. 59, 355–363 (2008)

    Article  Google Scholar 

  16. Hanson, A.D., Marvel, S.W., Bernacki, S.H., Banes, A.J., van Aalst, J., Loboa, E.G.: Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities. Ann. Biomed. Eng. 37, 955–965 (2009)

    Article  Google Scholar 

  17. Hara, Y., Wakino, S., Tanabe, Y., Saito, M., Tokuyama, H., Washida, N., Tatematsu, S., Yoshioka, K., Homma, K., Hasegawa, K., Minakuchi, H., Fujimura, K., Hosoya, K., Hayashi, K., Nakayama, K., Itoh, H.: Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Sci. Signal. 4, ra3 (2011)

    Google Scholar 

  18. Haudenschild, A.K., Hsieh, A.H., Kapila, S., Lotz, J.C.: Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann. Biomed. Eng. 37, 492–502 (2009)

    Article  Google Scholar 

  19. Hossain, M.G., Iwata, T., Mizusawa, N., Shima, S.W., Okutsu, T., Ishimoto, K., Yoshimoto, K.: Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARγ2 and C/EBPα. J. Biosci. Bioeng. 109, 297–303 (2010)

    Article  Google Scholar 

  20. Huang, H., Song, T.J., Li, X., Hu, L., He, Q., Liu, M., Lane, M.D., Tang, Q.Q.: BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U.S.A. 106, 12670–12675 (2009)

    Article  Google Scholar 

  21. Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M.: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 107, 4872–4877 (2010)

    Article  Google Scholar 

  22. Koike, M., Shimokawa, H., Kanno, Z., Ohya, K., Soma, K.: Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J. Bone Miner. Metab. 23, 219–225 (2005)

    Article  Google Scholar 

  23. Lee, J.S., Park, J.H., Kwon, I.K., Lim, J.Y.: Retinoic acid inhibits BMP4-induced C3H10T1/2 stem cell commitment to adipocyte via downregulating Smad/p38MAPK signaling. Biochem. Biophys. Res. Commun. 409, 550–555 (2011)

    Article  Google Scholar 

  24. Lee, J.S., Ha, L., Park, J.H., Lim, J.Y.: Mechanical stretch suppresses BMP4 induction of stem cell adipogenesis via upregulating ERK but not through downregulating Smad or p38. Biochem. Biophys. Res. Commun. 418, 278–283 (2012)

    Article  Google Scholar 

  25. Lee, J.S., Ha, L., Kwon, I.K., Lim, J.Y.: The role of focal adhesion kinase in BMP4 induction of mesenchymal stem cell adipogenesis. Biochem. Biophys. Res. Commun. 435, 696–701 (2013)

    Article  Google Scholar 

  26. Lee, J., Abdeen, A.A., Zhang, D., Kilian, K.A.: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148 (2013)

    Article  Google Scholar 

  27. Levy, A., Enzer, S., Shoham, N., Zaretsky, U., Gefen, A.: Large, but not small sustained tensile strains stimulate adipogenesis in culture. Ann. Biomed. Eng. 40, 1052–1060 (2012)

    Article  Google Scholar 

  28. Li, D., Tang, T., Lu, J., Dai, K.: Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng. Part A 15, 2773–2783 (2009)

    Article  Google Scholar 

  29. Lim, J.Y., Dreiss, A.D., Zhou, Z., Hansen, J.C., Siedlecki, C.A., Hengstebeck, R.W., Cheng, J., Winograd, N., Donahue, H.J.: The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 28, 1787–1797 (2007)

    Article  Google Scholar 

  30. Lim, J.Y., Loiselle, A.E., Lee, J.S., Zhang, Y., Salvi, J.D., Donahue, H.J.: Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J. Orthop. Res. 29, 1627–1633 (2011)

    Article  Google Scholar 

  31. Liu, L., Yuan, W., Wang, J.: Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech. Model. Mechanobiol. 9, 659–670 (2010)

    Article  Google Scholar 

  32. Marthiens, V., Kazanis, I., Moss, L., Long, K., Ffrench-Constant, C.: Adhesion molecules in the stem cell niche-more than just staying in shape? J. Cell Sci. 123, 1613–1622 (2010)

    Article  Google Scholar 

  33. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004)

    Article  Google Scholar 

  34. Meyer, E.G., Buckley, C.T., Thorpe, S.D., Kelly, D.J.: Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J. Biomech. 43, 2516–2523 (2010)

    Article  Google Scholar 

  35. Park, S.H., Sim, W.Y., Min, B.H., Yang, S.S., Khademhosseini, A., Kaplan, D.L.: Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS ONE 7, e46689 (2012)

    Article  Google Scholar 

  36. Poudel, I., Menter, D.E., Lim, J.Y.: Directing cell function and fate via micropatterning: role of cell patterning size, shape, and interconnectivity. Biomed. Eng. Lett. 2, 38–45 (2012)

    Article  Google Scholar 

  37. Riehl, B.D., Lim, J.Y.: Macro and microfluidic flows for skeletal regenerative medicine. Cells 1, 1225–1245 (2012)

    Article  Google Scholar 

  38. Riehl, B.D., Park, J.H., Kwon, I.K., Lim, J.Y.: Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng. Part B Rev. 18, 288–300 (2012)

    Article  Google Scholar 

  39. Salvi, J.D., Lim, J.Y., Donahue, H.J.: Finite element analyses of fluid flow conditions in cell culture. Tissue Eng. Part C Methods 16, 661–670 (2010)

    Article  Google Scholar 

  40. Salvi, J.D., Lim, J.Y., Donahue, H.J.: Increased mechanosensitivity of cells cultured on nanotopographies. J. Biomech. 43, 3058–3062 (2010)

    Article  Google Scholar 

  41. Schätti, O., Grad, S., Goldhahn, J., Salzmann, G., Li, Z., Alini, M., Stoddart, M.J.: A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater. 22, 214–225 (2011)

    Google Scholar 

  42. Sen, B., Xie, Z., Case, N., Thompson, W.R., Uzer, G., Styner, M., Rubin, J.: mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow derived mesenchymal stem cells. J. Bone Miner. Res. 29, 78–89 (2014)

    Google Scholar 

  43. Sen, B., Xie, Z., Case, N., Ma, M., Rubin, C., Rubin, J.: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149, 6065–6075 (2008)

    Article  Google Scholar 

  44. Sen, B., Styner, M., Xie, Z., Case, N., Rubin, C.T., Rubin, J.: Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J. Biol. Chem. 11(284), 34607–34617 (2009)

    Article  Google Scholar 

  45. Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44, 593–599 (2011)

    Article  Google Scholar 

  46. Sharma, R.I., Snedeker, J.G.: Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS ONE 7, e31504 (2012)

    Article  Google Scholar 

  47. Shoham, N., Gefen, A.: Mechanotransduction in adipocytes. J. Biomech. 45, 1–8 (2012)

    Article  Google Scholar 

  48. Shoham, N., Gottlieb, R., Sharabani-Yosef, O., Zaretsky, U., Benayahu, D., Gefen, A.: Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am. J. Physiol. Cell Physiol. 302, C429–C441 (2012)

    Article  Google Scholar 

  49. Song, W., Lu, H., Kawazoe, N., Chen, G.: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir 27, 6155–6162 (2011)

    Article  Google Scholar 

  50. Takada, I., Kouzmenko, A.P., Kato, S.: Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat. Rev. Rheumatol. 5, 442–447 (2009)

    Article  Google Scholar 

  51. Tanabe, Y., Koga, M., Saito, M., Matsunaga, Y., Nakayama, K.: Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2. J. Cell Sci. 117, 3605–3614 (2004)

    Article  Google Scholar 

  52. Wang, X., Yan, C., Ye, K., He, Y., Li, Z., Ding, J.: Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 34, 2865–2874 (2013)

    Article  Google Scholar 

  53. Weyand, B., Kasper, C., Israelowitz, M., Gille, C., von Schroeder, H.P., Reimers, K., Vogt, P.M.: A differential pressure laminar flow reactor supports osteogenic differentiation and extracellular matrix formation from adipose mesenchymal stem cells in a macroporous ceramic scaffold. Biores. Open Access 1, 145–156 (2012)

    Article  Google Scholar 

  54. Yang, X., Cai, X., Wang, J., Tang, H., Yuan, Q., Gong, P., Lin, Y.: Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells. Cell Prolif. 45, 158–166 (2012)

    Article  Google Scholar 

  55. Yourek, G., McCormick, S.M., Mao, J.J., Reilly, G.C.: Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen. Med. 5, 713–724 (2010)

    Article  Google Scholar 

  56. Zheng, W., Xie, Y., Zhang, W., Wang, D., Ma, W., Wang, Z., Jiang, X.: Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr. Biol. (Camb). 4, 1102–1111 (2012)

    Article  Google Scholar 

  57. Zhong, W., Tian, K., Zheng, X., Li, L., Zhang, W., Wang, S., Qin, J.: Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by Yes-associated protein. Stem Cells Dev. 22, 2083–2093 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Yul Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoll, H., Lim, J.Y. (2013). Role of Mechanical Stimulations in Directing Mesenchymal Stem Cell Adipogenesis. In: Gefen, A., Benayahu, D. (eds) The Mechanobiology of Obesity and Related Diseases. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 16. Springer, Cham. https://doi.org/10.1007/8415_2013_173

Download citation

  • DOI: https://doi.org/10.1007/8415_2013_173

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09335-2

  • Online ISBN: 978-3-319-09336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics