Skip to main content
Log in

Osteogenic Effects of Rest Inserted and Continuous Cyclic Tensile Strain on hASC Lines with Disparate Osteodifferentiation Capabilities

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We investigated the effects of two types of cyclic tensile strain, continuous and rest inserted, on osteogenic differentiation of human adipose-derived adult stem cells (hASCs). The influence of these mechanical strains was tested on two hASC lines having different mineral deposition potential, with one cell line depositing approximately nine times as much calcium as the other hASC line after 14 days of culture in osteogenic medium on tissue culture plastic. Results showed that both continuous (10% strain, 1 Hz) and rest inserted cyclic tensile strain (10% strain, 1 Hz, 10 s rest after each cycle) regimens increased the amount and rate of calcium deposition for both high and low calcium depositing hASC lines as compared to unstrained controls. The response was similar for both types of tensile strain for a given cell line, however, cyclic tensile strain had a much stronger osteogenic effect on the high calcium depositing hASC line, suggesting that mechanical loading has a greater effect on cell lines that already have an innate ability to produce bone as compared to cell lines that do not. This is the first study to investigate the osteodifferentiation effects of cyclic tensile strain on hASCs and the first to show that both continuous (10%, 1 Hz) and rest inserted (10%, 1 Hz, 10 s rest) cyclic tensile strain accelerate hASC osteodifferentiation and increase calcium accretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Afizah, H., Z. Yang, J. H. Hui, H. W. Ouyang, and E. H. Lee. A comparison between the chondrogenic potential of human bone marrow stem cells (bmscs) and adipose-derived stem cells (adscs) taken from the same donors. Tissue Eng. 13: 659–66, 2007. doi:10.1089/ten.2006.0118.

    Article  PubMed  CAS  Google Scholar 

  2. Al-Nasiry, S., N. Geusens, M. Hanssens, C. Luyten, and R. Pijnenborg. The use of alamar blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod. 22: 1304–9, 2007. doi:10.1093/humrep/dem011.

    Article  PubMed  CAS  Google Scholar 

  3. Awad, H. A., Y. D. Halvorsen, J. M. Gimble, and F. Guilak. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9: 1301–12, 2003. doi:10.1089/10763270360728215.

    Article  PubMed  CAS  Google Scholar 

  4. Batra, N. N., Y. J. Li, C. E. Yellowley, L. You, A. M. Malone, C. H. Kim, and C. R. Jacobs. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J Biomech. 38: 1909–17, 2005. doi:10.1016/j.jbiomech.2004.08.009.

    Article  PubMed  Google Scholar 

  5. Bernacki, S. H., M. E. Wall, and E. G. Loboa. Isolation of human mesenchymal stem cells from bone and adipose tissue. Methods Cell Biol. 86: 257–78, 2008. doi:10.1016/S0091-679X(08)00011-3.

    Article  PubMed  CAS  Google Scholar 

  6. Bruder, S. P., N. Jaiswal, and S. E. Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 64: 278–94, 1997. doi:10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  7. Bruder, S. P., K. H. Kraus, V. M. Goldberg, and S. Kadiyala. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 80: 985–96, 1998.

    PubMed  CAS  Google Scholar 

  8. Cheng, S. L., J. W. Yang, L. Rifas, S. F. Zhang, and L. V. Avioli. Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone. Endocrinology. 134: 277–86, 1994. doi:10.1210/en.134.1.277.

    Article  PubMed  CAS  Google Scholar 

  9. De Ugarte, D. A., Z. Alfonso, P. A. Zuk, A. Elbarbary, M. Zhu, P. Ashjian, P. Benhaim, M. H. Hedrick, and J. K. Fraser. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett. 89: 267–70, 2003. doi:10.1016/S0165-2478(03)00108-1.

    Article  PubMed  CAS  Google Scholar 

  10. De Ugarte, D. A., K. Morizono, A. Elbarbary, Z. Alfonso, P. A. Zuk, M. Zhu, J. L. Dragoo, P. Ashjian, B. Thomas, P. Benhaim, I. Chen, J. Fraser, and M. H. Hedrick. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 174: 101–9, 2003. doi:10.1159/000071150.

    Article  PubMed  Google Scholar 

  11. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science. 310: 1139–43, 2005. doi:10.1126/science.1116995.

    Article  PubMed  CAS  Google Scholar 

  12. Donahue, S. W., H. J. Donahue, and C. R. Jacobs. Osteoblastic cells have refractory periods for fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J Biomech. 36: 35–43, 2003. doi:10.1016/S0021-9290(02)00318-4.

    Article  PubMed  Google Scholar 

  13. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell. 126: 677–89, 2006. doi:10.1016/j.cell.2006.06.044.

    Article  PubMed  CAS  Google Scholar 

  14. Estes, B. T., A. W. Wu, and F. Guilak. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum. 54: 1222–32, 2006. doi:10.1002/art.21779.

    Article  PubMed  CAS  Google Scholar 

  15. Estes, B. T., A. W. Wu, R. W. Storms, and F. Guilak. Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol. 209: 987–95, 2006. doi:10.1002/jcp.20808.

    Article  PubMed  CAS  Google Scholar 

  16. Gilbert, J. A., P. S. Weinhold, A. J. Banes, G. W. Link, and G. L. Jones. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J Biomech. 27: 1169–77, 1994. doi:10.1016/0021-9290(94)90057-4.

    Article  PubMed  CAS  Google Scholar 

  17. Haasper, C., M. Jagodzinski, M. Drescher, R. Meller, M. Wehmeier, C. Krettek, and E. Hesse. Cyclic strain induces fosb and initiates osteogenic differentiation of mesenchymal cells. Exp. Toxicol. Pathol., 2008 (Epub ahead of print).

  18. Hanson, A., M. E. Wall, B. Pourdeyhimi, E. G. Loboa. Effects of oxygen plasma treatment on adipose-derived human mesenchymal stem cell adherence to poly(l-lactic acid) scaffolds. Journal of Biomaterial Science. Polymer Edition. 18: 1387–1400, 2007. doi:10.1163/156856207782246812.

    Article  PubMed  CAS  Google Scholar 

  19. Hattori, H., M. Sato, K. Masuoka, M. Ishihara, T. Kikuchi, T. Matsui, B. Takase, T. Ishizuka, M. Kikuchi, and K. Fujikawa. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. 178: 2–12, 2004. doi:10.1159/000081088.

    Article  PubMed  Google Scholar 

  20. Im, G. I., Y. W. Shin, and K. B. Lee. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage. 13: 845–53, 2005. doi:10.1016/j.joca.2005.05.005.

    Article  Google Scholar 

  21. Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 64: 295–312, 1997. doi:10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I.

    Article  PubMed  CAS  Google Scholar 

  22. Jones, B. F., M. E. Wall, R. L. Carroll, S. Washburn, and A. J. Banes. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech. 38: 1653–64, 2005. doi:10.1016/j.jbiomech.2004.07.027.

    Article  PubMed  Google Scholar 

  23. Kon, E., A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Giardino, R. Cancedda, and R. Quarto. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 49: 328–37, 2000. doi:10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  24. Kubicek, J. D., S. Brelsford, P. Ahluwalia, and P. R. Leduc. Integrated lithographic membranes and surface adhesion chemistry for three-dimensional cellular stimulation. Langmuir. 20: 11552–6, 2004. doi:10.1021/la0487646.

    Article  PubMed  CAS  Google Scholar 

  25. Kurpinski, K., and S. Li. Mechanical stimulation of stem cells using cyclic uniaxial strain. J. Vis. Exp. 6: 242, 2007.

    PubMed  Google Scholar 

  26. LaMothe, J. M., and R. F. Zernicke. Rest insertion combined with high-frequency loading enhances osteogenesis. J Appl Physiol. 96: 1788–93, 2004. doi:10.1152/japplphysiol.01145.2003.

    Article  PubMed  Google Scholar 

  27. Liu, T. M., M. Martina, D. W. Hutmacher, J. H. Hui, E. H. Lee, and B. Lim. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 25: 750–60, 2007. doi:10.1634/stemcells.2006-0394.

    Article  PubMed  CAS  Google Scholar 

  28. Loboa, E. G., T. D. Fang, S. M. Warren, D. P. Lindsey, K. D. Fong, M. T. Longaker, and D. R. Carter. Mechanobiology of mandibular distraction osteogenesis: Experimental analyses with a rat model. Bone. 34: 336–43, 2004. doi:10.1016/j.bone.2003.10.012.

    Article  PubMed  Google Scholar 

  29. Mauney, J. R., T. Nguyen, K. Gillen, C. Kirker-Head, J. M. Gimble, and D. L. Kaplan. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3d scaffolds. Biomaterials. 28: 5280–5290, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Mauney, J. R., S. Sjostorm, J. Blumberg, R. Horan, J. P. O’Leary, G. Vunjak-Novakovic, V. Volloch, and D. L. Kaplan. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-d partially demineralized bone scaffolds in vitro. Calcif Tissue Int. 74: 458–68, 2004. doi:10.1007/s00223-003-0104-7.

    Article  PubMed  CAS  Google Scholar 

  31. McCullen, S. D., D. R. Stevens, W. A. Roberts, L. I. Clarke, S. H. Bernacki, R. E. Gorga, and E. G. Loboa. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomedicine. 2: 253–63, 2007.

    PubMed  CAS  Google Scholar 

  32. Mehlhorn, A. T., P. Niemeyer, S. Kaiser, G. Finkenzeller, G. B. Stark, N. P. Sudkamp, and H. Schmal. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 12: 2853–62, 2006. doi:10.1089/ten.2006.12.2853.

    Article  PubMed  CAS  Google Scholar 

  33. Nuttelman, C. R., M. C. Tripodi, and K. S. Anseth. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hmscs. J Biomed Mater Res A. 76: 183–95, 2006. doi:10.1002/jbm.a.30537.

    PubMed  Google Scholar 

  34. Paccione, M. F., B. J. Mehrara, S. M. Warren, J. A. Greenwald, J. A. Spector, J. S. Luchs, and M. T. Longaker. Rat mandibular distraction osteogenesis: Latency, rate, and rhythm determine the adaptive response. J Craniofac Surg. 12: 175–82, 2001. doi:10.1097/00001665-200103000-00015.

    Article  PubMed  CAS  Google Scholar 

  35. Pfeiler, T. W., R. D. Sumanasinghe, and E. G. Loboa. Finite element modeling of 3d human mesenchymal stem cell-seeded collagen matrices exposed to tensile strain. J Biomech. 41: 2289–96, 2008. doi:10.1016/j.jbiomech.2008.04.007.

    Article  PubMed  Google Scholar 

  36. Phinney, D. G., G. Kopen, W. Righter, S. Webster, N. Tremain, and D. J. Prockop. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem. 75: 424–36, 1999. doi:10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2-8.

    Article  PubMed  CAS  Google Scholar 

  37. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science. 284: 143–7, 1999. doi:10.1126/science.284.5411.143.

    Article  PubMed  CAS  Google Scholar 

  38. Qin, Y. X., C. T. Rubin, and K. J. McLeod. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res. 16: 482–9, 1998. doi:10.1002/jor.1100160414.

    Article  PubMed  CAS  Google Scholar 

  39. Quarto, R., M. Mastrogiacomo, R. Cancedda, S. M. Kutepov, V. Mukhachev, A. Lavroukov, E. Kon, and M. Marcacci. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 344: 385–6, 2001. doi:10.1056/NEJM200102013440516.

    Article  PubMed  CAS  Google Scholar 

  40. Richards, M., J. A. Goulet, J. A. Weiss, N. A. Waanders, M. B. Schaffler, and S. A. Goldstein. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Clin. Orthop. Relat. Res. 355 Suppl:S191–S204, 1998. doi:10.1097/00003086-199810001-00020.

  41. Rickard, D. J., M. Kassem, T. E. Hefferan, G. Sarkar, T. C. Spelsberg, and B. L. Riggs. Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res. 11: 312–24, 1996.

    Article  PubMed  CAS  Google Scholar 

  42. Ringe, J., C. Kaps, B. Schmitt, K. Buscher, J. Bartel, H. Smolian, O. Schultz, G. R. Burmester, T. Haupl, and M. Sittinger. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res. 307: 321–7, 2002. doi:10.1007/s00441-002-0525-z.

    Article  PubMed  CAS  Google Scholar 

  43. Rizzi, S. C., D. J. Heath, A. G. Coombes, N. Bock, M. Textor, and S. Downes. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res. 55: 475–86, 2001. doi:10.1002/1097-4636(20010615)55:4<475::AID-JBM1039>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  44. Robling, A. G., D. B. Burr, and C. H. Turner. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res. 15: 1596–602, 2000. doi:10.1359/jbmr.2000.15.8.1596.

    Article  PubMed  CAS  Google Scholar 

  45. Robling, A. G., D. B. Burr, and C. H. Turner. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 204: 3389–99, 2001.

    PubMed  CAS  Google Scholar 

  46. Rubin, C. T., and L. E. Lanyon. 1984 Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 66: 397–402, 1984.

    PubMed  CAS  Google Scholar 

  47. Sen, A., Y. R. Lea-Currie, D. Sujkowska, D. M. Franklin, W. O. Wilkison, Y. D. Halvorsen, and J. M. Gimble. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem. 81: 312–9, 2001. doi:10.1002/1097-4644(20010501)81:2<312::AID-JCB1046>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  48. Siddappa, R., R. Licht, C. van Blitterswijk, and J. de Boer. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res. 25: 1029–41, 2007. doi:10.1002/jor.20402.

    Article  PubMed  CAS  Google Scholar 

  49. Simmons, C. A., S. Matlis, A. J. Thornton, S. Chen, C. Y. Wang, and D. J. Mooney. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (erk1/2) signaling pathway. J Biomech. 36: 1087–96, 2003. doi:10.1016/S0021-9290(03)00110-6.

    Article  PubMed  Google Scholar 

  50. Song, G., Y. Ju, H. Soyama, T. Ohashi, and M. Sato. Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells. Mol Cell Biomech. 4: 201–10, 2007.

    PubMed  Google Scholar 

  51. Srinivasan, S., S. C. Agans, K. A. King, N. Y. Moy, S. L. Poliachik, and T. S. Gross. Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone. 33: 946–55, 2003. doi:10.1016/j.bone.2003.07.009.

    Article  PubMed  Google Scholar 

  52. Srinivasan, S., B. J. Ausk, S. L. Poliachik, S. E. Warner, T. S. Richardson, and T. S. Gross. Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles. J Appl Physiol. 102: 1945–52, 2007. doi:10.1152/japplphysiol.00507.2006.

    Article  PubMed  Google Scholar 

  53. Srinivasan, S., D. A. Weimer, S. C. Agans, S. D. Bain, and T. S. Gross. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res. 17: 1613–20, 2002. doi:10.1359/jbmr.2002.17.9.1613.

    Article  PubMed  Google Scholar 

  54. Sumanasinghe, R. D., S. H. Bernacki, and E. G. Loboa. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: Effect of uniaxial cyclic tensile strain on bone morphogenetic protein (bmp-2) mrna expression. Tissue Eng. 12: 3459–65, 2006. doi:10.1089/ten.2006.12.3459.

    Article  PubMed  CAS  Google Scholar 

  55. Sumanasinghe, R. D., J. A. Osborne, and E. G. Loboa. Mesenchymal stem cell-seeded collagen matrices for bone repair: effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro. J. Biomed. Mater. Res. A 88: 778–786, 2009.

    PubMed  Google Scholar 

  56. Sun, H., C. Wu, K. Dai, J. Chang, and T. Tang. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials. 27: 5651–7, 2006. doi:10.1016/j.biomaterials.2006.07.027.

    Article  PubMed  CAS  Google Scholar 

  57. Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone. 23: 399–407, 1998. doi:10.1016/S8756-3282(98)00118-5.

    Article  PubMed  CAS  Google Scholar 

  58. Umemura, Y., T. Ishiko, T. Yamauchi, M. Kurono, and S. Mashiko. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 12: 1480–5, 1997. doi:10.1359/jbmr.1997.12.9.1480.

    Article  PubMed  CAS  Google Scholar 

  59. Vidal, M. A., G. E. Kilroy, M. J. Lopez, J. R. Johnson, R. M. Moore, and J. M. Gimble. Characterization of equine adipose tissue-derived stromal cells: Adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg. 36: 613–22, 2007. doi:10.1111/j.1532-950X.2007.00313.x.

    Article  PubMed  Google Scholar 

  60. Vincent, W. A Method to Apply Uniaxial Mechanical Loading to Monolayer Cell Cultures. Hillsborough, NC: Flexcell International Corporation, 2003.

  61. Waanders, N. A., M. Richards, H. Steen, J. L. Kuhn, S. A. Goldstein, and J. A. Goulet. Evaluation of the mechanical environment during distraction osteogenesis. Clin. Orthop. Relat. Res. 349: 225–234, 1998. doi:10.1097/00003086-199804000-00028.

    Article  PubMed  Google Scholar 

  62. Wall, M. E., and A. J. Banes. Early responses to mechanical load in tendon: Role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 5: 70–84, 2005.

    PubMed  CAS  Google Scholar 

  63. Wall, M. E., S. H. Bernacki, and E. G. Loboa. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 13: 1291–8, 2007. doi:10.1089/ten.2006.0275.

    Article  PubMed  CAS  Google Scholar 

  64. Wall, M. E., A. Rachlin, C. A. Otey, and E. G. Loboa. Human adipose-derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain. Am J Physiol Cell Physiol. 293: C1532–8, 2007. doi:10.1152/ajpcell.00065.2007.

    Article  PubMed  CAS  Google Scholar 

  65. Wall, M. E., P. S. Weinhold, T. Siu, T. D. Brown, and A. J. Banes. Comparison of cellular strain with applied substrate strain in vitro. J Biomech. 40: 173–81, 2007. doi:10.1016/j.jbiomech.2005.10.032.

    Article  PubMed  Google Scholar 

  66. Ward, D. F., Jr., R. M. Salasznyk, R. F. Klees, J. Backiel, P. Agius, K. Bennett, A. Boskey, and G. E. Plopper. Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev. 16: 467–80, 2007. doi:10.1089/scd.2007.0034.

    Article  PubMed  CAS  Google Scholar 

  67. Weinzierl, K., A. Hemprich, and B. Frerich. Bone engineering with adipose tissue derived stromal cells. J Craniomaxillofac Surg. 34: 466–71, 2006. doi:10.1016/j.jcms.2006.07.860.

    PubMed  Google Scholar 

  68. Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 13: 4279–95, 2002. doi:10.1091/mbc.E02-02-0105.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by a North Carolina Biotechnology Center MRG grant (EGL). The authors would like to thank the members of the Cell Mechanics Laboratory for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth G. Loboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, A.D., Marvel, S.W., Bernacki, S.H. et al. Osteogenic Effects of Rest Inserted and Continuous Cyclic Tensile Strain on hASC Lines with Disparate Osteodifferentiation Capabilities. Ann Biomed Eng 37, 955–965 (2009). https://doi.org/10.1007/s10439-009-9648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9648-7

Keywords

Navigation