Skip to main content

Lymphatic Filariasis: Current Status of Elimination Using Chemotherapy and the Need for a Vaccine

  • Chapter
  • First Online:
Communicable Diseases of the Developing World

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 29))

Abstract

During the last one decade, the whole world witnessed one of the most coordinated efforts toward global elimination of lymphatic filariasis (LF), a neglected tropical parasitic infection that affects 120 million people living in 72 different tropical countries. The approach was to use annual mass drug administration (MDA) using a combination of two chemotherapeutic agents to clear circulating parasites (microfilaria) in infected individuals living in various endemic regions of the world. This approach substantially decreased the incidence of infection in almost all the countries where the program was initiated. However, the biggest challenge now is to sustain the success and attain prophylaxis. This can be achieved only by newer chemotherapeutic agents against adult worms and an effective vaccine that can prevent future infections. This chapter summarizes the current status of LF elimination and the need for a more stringent and sustainable approach to control LF infection in endemic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hotez PJ, Bottazzi ME, Strych U et al (2015) Neglected tropical diseases among the Association of Southeast Asian Nations (ASEAN): overview and update. PLoS Negl Trop Dis 9:e0003575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Anon (2008) Conclusions of the meeting of the Technical Advisory Group on the Global Elimination of Lymphatic Filariasis, November 2007. Wkly Epidemiol Rec 83:341–347

    Google Scholar 

  3. WHO (2012) Lymphatic filariasis. Fact Sheet 102

    Google Scholar 

  4. Zeldenryk LM, Gray M, Speare R et al (2011) The emerging story of disability associated with lymphatic filariasis: a critical review. PLoS Negl Trop Dis 5:e1366

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ottesen EA (2000) The global programme to eliminate lymphatic filariasis. Trop Med Int Health 5:591–594

    Article  CAS  PubMed  Google Scholar 

  6. Hoti SL, Pani SP, Vanamail P et al (2010) Effect of a single dose of diethylcarbamazine, albendazole or both on the clearance of Wuchereria bancrofti microfilariae and antigenaemia among microfilaria carriers: a randomized trial. Natl Med J India 23:72–76

    CAS  PubMed  Google Scholar 

  7. Nujum ZT, Remadevi S, Nirmala C et al (2012) Factors determining noncompliance to mass drug administration for lymphatic filariasis elimination. Trop Parasitol 2:109–115

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alexander ND (2015) Are we nearly there yet? Coverage and compliance of mass drug administration for lymphatic filariasis elimination. Trans R Soc Trop Med Hyg 109:173–174

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rebollo MP, Bockarie MJ (2014) Shrinking the lymphatic filariasis map: update on diagnostic tools for mapping and transmission monitoring. Parasitology 141:1912–1917

    Article  CAS  PubMed  Google Scholar 

  10. Sunish IP, Munirathinam A, Kalimuthu M et al (2014) Persistence of lymphatic filarial infection in the pediatric population of rural community, after six rounds of annual mass drug administrations. J Trop Pediatr 60:245–248

    Article  CAS  PubMed  Google Scholar 

  11. Sinha N, Mallik S, Mallik S et al (2012) Coverage and compliance of mass drug administration in lymphatic filariasis: a comparative analysis in a district of West Bengal, India. Glob J Med Public Health 1:3–10

    Google Scholar 

  12. Hussain MA, Sitha AK, Swain S et al (2014) Mass drug administration for lymphatic filariasis elimination in a coastal state of India: a study on barriers to coverage and compliance. Infect Dis Poverty 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alhassan A, Li Z, Poole CB et al (2015) Expanding the MDx toolbox for filarial diagnosis and surveillance. Trends Parasitol 31:391–400

    Article  PubMed  Google Scholar 

  14. Ibrahim F, Thio TH, Faisal T et al (2015) The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review. Sensors (Basel) 15:6947–6995

    Article  CAS  Google Scholar 

  15. Babayan SA, Allen JE, Taylor DW (2012) Future prospects and challenges of vaccines against filariasis. Parasite Immunol 34:243–253

    Article  CAS  PubMed  Google Scholar 

  16. Dakshinamoorthy G, von Gegerfelt A, Andersen H et al (2014) Evaluation of a multivalent vaccine against lymphatic filariasis in rhesus macaque model. PLoS One 9:e112982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shenoy RK, Bockarie MJ (2011) Lymphatic filariasis in children: clinical features, infection burdens and future prospects for elimination. Parasitology 138:1559–1568

    Article  PubMed  Google Scholar 

  18. Otabil KB, Tenkorang SB (2015) Filarial hydrocele: a neglected condition of a neglected tropical disease. J Infect Dev Ctries 9:456–462

    Article  PubMed  Google Scholar 

  19. Streit T, Lafontant JG (2008) Eliminating lymphatic filariasis: a view from the field. Ann N Y Acad Sci 1136:53–63

    Article  PubMed  Google Scholar 

  20. Stanton MC, Smith EL, Martindale S et al (2015) Exploring hydrocoele surgery accessibility and impact in a lymphatic filariasis endemic area of southern Malawi. Trans R Soc Trop Med Hyg 109:252–261

    Article  PubMed  Google Scholar 

  21. Addiss DG, Brady MA (2007) Morbidity management in the Global Programme to Eliminate Lymphatic Filariasis: a review of the scientific literature. Filaria J 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vaqas B, Ryan TJ (2003) Lymphoedema: pathophysiology and management in resource-poor settings – relevance for lymphatic filariasis control programmes. Filaria J 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Addiss DG (2013) Global elimination of lymphatic filariasis: a “mass uprising of compassion”. PLoS Negl Trop Dis 7:e2264

    Article  PubMed  PubMed Central  Google Scholar 

  24. Babu S, Nutman TB (2012) Immunopathogenesis of lymphatic filarial disease. Semin Immunopathol 34:847–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vijayan VK (2007) Tropical pulmonary eosinophilia: pathogenesis, diagnosis and management. Curr Opin Pulm Med 13:428–433

    Article  PubMed  Google Scholar 

  26. Akuthota P, Weller PF (2012) Eosinophilic pneumonias. Clin Microbiol Rev 25:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ichimori K (2014) MDA-lymphatic filariasis. Trop Med Health 42:21–24

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hooper PJ, Chu BK, Mikhailov A et al (2014) Assessing progress in reducing the at-risk population after 13 years of the global programme to eliminate lymphatic filariasis. PLoS Negl Trop Dis 8:e3333

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cano J, Rebollo MP, Golding N et al (2014) The global distribution and transmission limits of lymphatic filariasis: past and present. Parasit Vectors 7:466

    Article  PubMed  PubMed Central  Google Scholar 

  30. Raju K, Jambulingam P, Sabesan S et al (2010) Lymphatic filariasis in India: epidemiology and control measures. J Postgrad Med 56:232–238

    Article  PubMed  Google Scholar 

  31. Kimura E (2011) The Global Programme to Eliminate Lymphatic Filariasis: history and achievements with special reference to annual single-dose treatment with diethylcarbamazine in Samoa and Fiji. Trop Med Health 39:17–30

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anon (1996) Four TDR diseases can be “eliminated”. TDR News 1–2

    Google Scholar 

  33. Horton J, Witt C, Ottesen EA et al (2000) An analysis of the safety of the single dose, two drug regimens used in programmes to eliminate lymphatic filariasis. Parasitology 121(Suppl):S147–S160

    Article  PubMed  Google Scholar 

  34. Shenoy RK, Suma TK, Rajan K et al (1998) Prevention of acute adenolymphangitis in brugian filariasis: comparison of the efficacy of ivermectin and diethylcarbamazine, each combined with local treatment of the affected limb. Ann Trop Med Parasitol 92:587–594

    Article  CAS  PubMed  Google Scholar 

  35. WHO (2006) Informal consultation on preventing disability from lymphatic filariasis, WHO, Geneva. Wkly Epidemiol Rec 81:373–384

    Google Scholar 

  36. Das L, Subramanyam Reddy G et al (2003) Some observations on the effect of Daflon (micronized purified flavonoid fraction of Rutaceae aurantiae) in bancroftian filarial lymphoedema. Filaria J 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hewitt RI, Kushner S, White E et al (1947) Experimental chemotherapy of filariasis; effect of 1-diethyl-carbamyl-4-methylpiperazine hydrochloride against naturally acquired filarial infections in cotton rats and dogs. J Lab Clin Med 32:1314–1329

    CAS  PubMed  Google Scholar 

  38. Dreyer G, Addiss D, Williamson J et al (2006) Efficacy of co-administered diethylcarbamazine and albendazole against adult Wuchereria bancrofti. Trans R Soc Trop Med Hyg 100:1118–1125

    Article  CAS  PubMed  Google Scholar 

  39. Noroes J, Dreyer G, Santos A et al (1997) Assessment of the efficacy of diethylcarbamazine on adult Wuchereria bancrofti in vivo. Trans R Soc Trop Med Hyg 91:78–81

    Article  CAS  PubMed  Google Scholar 

  40. Hawking F, Marques RJ (1967) Control of Bancroftian filariasis by cooking salt medicated with diethylcarbamazine. Bull World Health Organ 37:405–414

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ottesen EA (2006) Lymphatic filariasis: treatment, control and elimination. Adv Parasitol 61:395–441

    Article  PubMed  Google Scholar 

  42. Haarbrink M, Terhell AJ, Abadi GK et al (1999) Adverse reactions following diethylcarbamazine (DEC) intake in ‘endemic normals’, microfilaraemics and elephantiasis patients. Trans R Soc Trop Med Hyg 93:91–96

    Article  CAS  PubMed  Google Scholar 

  43. McLaughlin SI, Radday J, Michel MC et al (2003) Frequency, severity, and costs of adverse reactions following mass treatment for lymphatic filariasis using diethylcarbamazine and albendazole in Leogane, Haiti, 2000. Am J Trop Med Hyg 68:568–573

    Article  PubMed  Google Scholar 

  44. Lima AW, Medeiros Z, Santos ZC et al (2012) Adverse reactions following mass drug administration with diethylcarbamazine in lymphatic filariasis endemic areas in the Northeast of Brazil. Rev Soc Bras Med Trop 45:745–750

    Article  PubMed  Google Scholar 

  45. Richard-Lenoble D, Chandenier J, Gaxotte P (2003) Ivermectin and filariasis. Fundam Clin Pharmacol 17:199–203

    Article  CAS  PubMed  Google Scholar 

  46. Dreyer G, Addiss D, Noroes J et al (1996) Ultrasonographic assessment of the adulticidal efficacy of repeat high-dose ivermectin in bancroftian filariasis. Trop Med Int Health 1:427–432

    Article  CAS  PubMed  Google Scholar 

  47. Jayakody RL, De Silva CSS, Weerasinghe WMT (1993) Treatment of bancroftian filariasis with albendazole: evaluation of efficacy and adverse reaction. Trop Biomed 10:19–24

    Google Scholar 

  48. Ottesen EA, Ismail MM, Horton J (1999) The role of albendazole in programmes to eliminate lymphatic filariasis. Parasitol Today 15:382–386

    Article  CAS  PubMed  Google Scholar 

  49. Rao RU, Nagodavithana KC, Samarasekera SD et al (2014) A comprehensive assessment of lymphatic filariasis in Sri Lanka six years after cessation of mass drug administration. PLoS Negl Trop Dis 8:e3281

    Article  PubMed  PubMed Central  Google Scholar 

  50. Critchley J, Addiss D, Gamble C et al (2005) Albendazole for lymphatic filariasis. Cochrane Database Syst Rev CD003753

    Google Scholar 

  51. Critchley J, Addiss D, Ejere H et al (2005) Albendazole for the control and elimination of lymphatic filariasis: systematic review. Trop Med Int Health 10:818–825

    Article  CAS  PubMed  Google Scholar 

  52. Ottesen EA (2002) Major progress toward eliminating lymphatic filariasis. N Engl J Med 347:1885–1886

    Article  PubMed  Google Scholar 

  53. Negesse Y, Lanoie LO, Neafie RC et al (1985) Loiasis: “Calabar” swellings and involvement of deep organs. Am J Trop Med Hyg 34:537–546

    Article  CAS  PubMed  Google Scholar 

  54. Boussinesq M (2006) Loiasis. Ann Trop Med Parasitol 100:715–731

    Article  CAS  PubMed  Google Scholar 

  55. Schwab AE, Churcher TS, Schwab AJ et al (2006) Population genetics of concurrent selection with albendazole and ivermectin or diethylcarbamazine on the possible spread of albendazole resistance in Wuchereria bancrofti. Parasitology 133:589–601

    Article  CAS  PubMed  Google Scholar 

  56. Yahathugoda TC, Weerasooriya MV, Sunahara T et al (2014) Rapid assessment procedures to detect hidden endemic foci in areas not subjected to mass drug administration in Sri Lanka. Parasitol Int 63:87–93

    Article  PubMed  Google Scholar 

  57. Beuria MK, Bal MS, Mandal NN et al (2002) Antigenemia at 10 years after diethylcarbamazine treatment of asymptomatic microfilaraemic individuals: marginal conversion to infection-free state. Parasite Immunol 24:109–111

    Article  CAS  PubMed  Google Scholar 

  58. Rebollo MP, Mohammed KA, Thomas B et al (2015) Cessation of mass drug administration for lymphatic filariasis in Zanzibar in 2006: was transmission interrupted? PLoS Negl Trop Dis 9:e0003669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Thomas G, Richards FO Jr, Eigege A et al (2009) A pilot program of mass surgery weeks for treatment of hydrocele due to lymphatic filariasis in central Nigeria. Am J Trop Med Hyg 80:447–451

    Article  PubMed  Google Scholar 

  60. Bockarie MJ, Pedersen EM, White GB et al (2009) Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol 54:469–487

    Article  CAS  PubMed  Google Scholar 

  61. Paily KP, Hoti SL, Das PK (2009) A review of the complexity of biology of lymphatic filarial parasites. J Parasit Dis 33:3–12

    Article  CAS  PubMed  Google Scholar 

  62. de Souza DK, Koudou B, Kelly-Hope LA et al (2012) Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis. Parasit Vectors 5:259

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kumari AK, Yuvaraj J, Das LK (2012) Issues in delivering morbidity management for lymphatic filariasis elimination: a study in Pondicherry, South India. Scientific World J 2012:372618

    Article  Google Scholar 

  64. Supali T, Djuardi Y, Pfarr KM et al (2008) Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin Infect Dis 46:1385–1393

    Article  CAS  PubMed  Google Scholar 

  65. Rao R, Well GJ (2002) In vitro effects of antibiotics on Brugia malayi worm survival and reproduction. J Parasitol 88:605–611

    Article  CAS  PubMed  Google Scholar 

  66. Townson S, Hutton D, Siemienska J et al (2000) Antibiotics and Wolbachia in filarial nematodes: antifilarial activity of rifampicin, oxytetracycline and chloramphenicol against Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Ann Trop Med Parasitol 94:801–816

    Article  CAS  PubMed  Google Scholar 

  67. Schaberle TF, Schiefer A, Schmitz A et al (2014) Corallopyronin A – a promising antibiotic for treatment of filariasis. Int J Med Microbiol 304:72–78

    Article  CAS  PubMed  Google Scholar 

  68. Debrah AY, Mand S, Marfo-Debrekyei Y et al (2007) Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Trop Med Int Health 12:1433–1441

    Article  CAS  PubMed  Google Scholar 

  69. Dreyer G, Noroes J, Figueredo-Silva J et al (2000) Pathogenesis of lymphatic disease in bancroftian filariasis: a clinical perspective. Parasitol Today 16:544–548

    Article  CAS  PubMed  Google Scholar 

  70. Hoerauf A (2008) Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis 21:673–681

    Article  CAS  PubMed  Google Scholar 

  71. Bulman CA, Bidlow CM, Lustigman S et al (2015) Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis. PLoS Negl Trop Dis 9:e0003534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Casley-Smith JR, Jamal S, Casley-Smith J (1993) Reduction of filaritic lymphoedema and elephantiasis by 5,6 benzo-alpha-pyrone (coumarin), and the effects of diethylcarbamazine (DEC). Ann Trop Med Parasitol 87:247–258

    Article  CAS  PubMed  Google Scholar 

  73. WHO (1996) Coumarin (Lodema). WHO Pharm News 10:2

    Google Scholar 

  74. Sarma RV, Vallishayee RS, Rao RS et al (1988) Use of mebendazole in combination with DEC in bancroftian filariasis. Indian J Med Res 87:579–583

    CAS  PubMed  Google Scholar 

  75. Farelli JD, Galvin BD, Li Z et al (2014) Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs. PLoS Pathog 10:e1004245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sharma RD, Bag S, Tawari NR et al (2013) Exploration of 2, 4-diaminopyrimidine and 2, 4-diamino-s-triazine derivatives as potential antifilarial agents. Parasitology 140:959–965

    Article  CAS  PubMed  Google Scholar 

  77. Mishra V, Parveen N, Singhal KC et al (2005) Antifilarial activity of Azadirachta indica on cattle filarial parasite Setaria cervi. Fitoterapia 76:54–61

    Article  PubMed  Google Scholar 

  78. Khunkitti W, Fujimaki Y, Aoki Y (2000) In vitro antifilarial activity of extracts of the medicinal plant Cardiospermum halicacabum against Brugia pahangi. J Helminthol 74:241–246

    Article  CAS  PubMed  Google Scholar 

  79. Al-Abd NM, Nor ZM, Al-Adhroey AH et al (2013) Recent advances on the use of biochemical extracts as filaricidal agents. Evid Based Complement Alternat Med eCAM 2013:986573

    Article  PubMed  Google Scholar 

  80. Sharma RD, Veerpathran AR, Dakshinamoorthy G et al (2010) Possible implication of oxidative stress in anti-filarial effect of certain traditionally used medicinal plants in vitro against Brugia malayi microfilariae. Pharmacognosy Res 2:350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lakshmi V, Joseph SK, Srivastava S et al (2010) Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi. Acta Trop 116:127–133

    Article  CAS  PubMed  Google Scholar 

  82. Azeez S, Babu RO, Aykkal R et al (2012) Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes. J Mol Model 18:151–163

    Article  CAS  PubMed  Google Scholar 

  83. Ali M, Afzal M, Kaushik U et al (2014) Perceptive solutions to anti-filarial chemotherapy of lymphatic filariasis from the plethora of nanomedical sciences. J Drug Target 22:1–13

    Article  CAS  PubMed  Google Scholar 

  84. Rebollo MP, Bockarie MJ (2013) Toward the elimination of lymphatic filariasis by 2020: treatment update and impact assessment for the endgame. Expert Rev Anti Infect Ther 11:723–731

    Article  CAS  PubMed  Google Scholar 

  85. Johnston KL, Ford L, Taylor MJ (2014) Overcoming the challenges of drug discovery for neglected tropical diseases: the A WOL experience. J Biomol Screen 19:335–343

    Article  CAS  PubMed  Google Scholar 

  86. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  87. Foster J, Ganatra M, Kamal I et al (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zimmer C (2001) Wolbachia. A tale of sex and survival. Science 292:1093–1095

    Article  CAS  PubMed  Google Scholar 

  89. Zeldenryk L, Gray M, Gordon S et al (2014) The use of focus groups to develop a culturally relevant quality of life tool for lymphatic filariasis in Bangladesh. Qual Life Res 23:299–309

    Article  PubMed  Google Scholar 

  90. Day KP (1991) The endemic normal in lymphatic filariasis: a static concept. Parasitol Today 7:341–343

    Article  CAS  PubMed  Google Scholar 

  91. Joseph SK, Ramaswamy K (2013) Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis. Vaccine 31:3320–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bal M, Das MK (1999) Antibody response to a filarial antigen fraction in individuals exposed to Wuchereria bancrofti infection in India. Acta Trop 72:259–274

    Article  CAS  PubMed  Google Scholar 

  93. Hitch WL, Hightower AW, Eberhard ML et al (1991) Analysis of isotype-specific antifilarial antibody levels in a Haitian pediatric population. Am J Trop Med Hyg 44:161–167

    Article  CAS  PubMed  Google Scholar 

  94. Dakshinamoorthy G, Samykutty AK, Munirathinam G et al (2013) Multivalent fusion protein vaccine for lymphatic filariasis. Vaccine 31:1616–1622

    Article  CAS  PubMed  Google Scholar 

  95. Arumugam S, Wei J, Ward D et al (2014) Vaccination with a genetically modified Brugia malayi cysteine protease inhibitor-2 reduces adult parasite numbers and affects the fertility of female worms following a subcutaneous challenge of Mongolian gerbils (Meriones unguiculatus) with B. malayi infective larvae. Int J Parasitol 44:675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chandrashekar R, Rao UR, Subrahmanyam D (1985) Serum dependent cell-mediated immune reactions to Brugia pahangi infective larvae. Parasite Immunol 7:633–641

    Article  CAS  PubMed  Google Scholar 

  97. Samykutty A, Dakshinamoorthy G, Kalyanasundaram R (2010) Multivalent vaccine for lymphatic filariasis. Procedia Vaccinol 3:12–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sim BK, Kwa BH, Mak JW (1982) Immune responses in human Brugia malayi infections: serum dependent cell-mediated destruction of infective larvae in vitro. Trans R Soc Trop Med Hyg 76:362–370

    Article  CAS  PubMed  Google Scholar 

  99. Mackenzie CD, Oxenham SL, Liron DA et al (1985) The induction of functional mononuclear and multinuclear macrophages in murine brugian filariasis: morphological and immunological properties. Trop Med Parasitol 36:163–170

    CAS  PubMed  Google Scholar 

  100. Kurniawan A, Yazdanbakhsh M, van Ree R et al (1993) Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. J Immunol 150:3941–3950

    CAS  PubMed  Google Scholar 

  101. Malhotra I, Ouma JH, Wamachi A et al (2003) Influence of maternal filariasis on childhood infection and immunity to Wuchereria bancrofti in Kenya. Infect Immun 71:5231–5237, 111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arasu P, Nutman TB, Steel C et al (1989) Human T-cell stimulation, molecular characterization and in situ mRNA localization of a Brugia malayi recombinant antigen. Mol Biochem Parasitol 36:223–231

    Article  CAS  PubMed  Google Scholar 

  103. Steel C, Guinea A, Ottesen EA (1996) Evidence for protective immunity to bancroftian filariasis in the Cook Islands. J Infect Dis 174:598–605

    Article  CAS  PubMed  Google Scholar 

  104. Sunish IP, Rajendran R, Mani TR et al (2007) Vector control complements mass drug administration against bancroftian filariasis in Tirukoilur, India. Bull World Health Organ 85:138–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morris CP, Evans H, Larsen SE et al (2013) A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev 26:381–421

    Article  PubMed  PubMed Central  Google Scholar 

  106. Grieve RB, Wisnewski N, Frank GR et al (1995) Vaccine research and development for the prevention of filarial nematode infections. Pharm Biotechnol 6:737–768

    Article  CAS  PubMed  Google Scholar 

  107. Wong MM, Fredericks HJ, Ramachandran CP (1969) Studies on immunization against Brugia malayi infection in the rhesus monkey. Bull World Health Organ 40:493–501

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Li BW, Wang Z, Rush AC et al (2012) Transcription profiling reveals stage- and function-dependent expression patterns in the filarial nematode Brugia malayi. BMC Genomics 13:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Armstrong SD, Babayan SA, Lhermitte-Vallarino N et al (2014) Comparative analysis of the secretome from a model filarial nematode (Litomosoides sigmodontis) reveals maximal diversity in gravid female parasites. Mol Cell Proteomics 13:2527–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sahoo MK, Sisodia BS, Dixit S et al (2009) Immunization with inflammatory proteome of Brugia malayi adult worm induces a Th1/Th2-immune response and confers protection against the filarial infection. Vaccine 27:4263–4271

    Article  CAS  PubMed  Google Scholar 

  111. Wongkamchai S, Chiangjong W, Sinchaikul S et al (2011) Identification of Brugia malayi immunogens by an immunoproteomics approach. J Proteomics 74:1607–1613

    Article  CAS  PubMed  Google Scholar 

  112. Gnanasekar M, Rao KV, He YX et al (2004) Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect Immun 72:4707–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dakshinamoorthy G, Kalyanasundaram R (2013) Evaluating the efficacy of rBmHATalphac as a multivalent vaccine against lymphatic filariasis in experimental animals and optimizing the adjuvant formulation. Vaccine 32:19–25

    Article  CAS  PubMed  Google Scholar 

  114. Dakshinamoorthy G, Munirathinam G, Stoicescu K et al (2013) Large extracellular loop of tetraspanin as a potential vaccine candidate for filariasis. PLoS One 8:e77394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kalyanasundaram R, Balumuri P (2011) Multivalent vaccine formulation with BmVAL-1 and BmALT-2 confer significant protection against challenge infections with Brugia malayi in mice and jirds. Res Rep Trop Med 2011:45–56

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dakshinamoorthy G, Samykutty AK, Munirathinam G et al (2012) Biochemical characterization and evaluation of a Brugia malayi small heat shock protein as a vaccine against lymphatic filariasis. PLoS One 7:e34077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gnanasekar M, Anand SB, Ramaswamy K (2008) Identification and cloning of a novel tetraspanin (TSP) homologue from Brugia malayi. DNA Seq 19:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Joseph SK, Sambanthamoorthy S, Dakshinamoorthy G et al (2012) Protective immune responses to biolistic DNA vaccination of Brugia malayi abundant larval transcript-2. Vaccine 30:6477–6482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gregory WF, Atmadja AK, Allen JE et al (2000) The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis. Infect Immun 68:4174–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Anugraha G, Jeyaprita PJ, Madhumathi J et al (2013) Immune responses of B. malayi thioredoxin (TRX) and venom allergen homologue (VAH) chimeric multiple antigen for lymphatic filariasis. Acta Parasitol 58:468–477

    Article  CAS  PubMed  Google Scholar 

  121. Veerapathran A, Dakshinamoorthy G, Gnanasekar M et al (2009) Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoS Negl Trop Dis 3:e457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Anand SB, Kodumudi KN, Reddy MV et al (2011) A combination of two Brugia malayi filarial vaccine candidate antigens (BmALT-2 and BmVAH) enhances immune responses and protection in jirds. J Helminthol 85:442–452

    Article  CAS  PubMed  Google Scholar 

  123. Vedi S, Dangi A, Hajela K et al (2008) Vaccination with 73kDa recombinant heavy chain myosin generates high level of protection against Brugia malayi challenge in jird and mastomys models. Vaccine 26:5997–6005

    Article  CAS  PubMed  Google Scholar 

  124. Shakya S, Singh PK, Kushwaha S et al (2009) Adult Brugia malayi approximately 34 kDa (BMT-5) antigen offers Th1 mediated significant protection against infective larval challenge in Mastomys coucha. Parasitol Int 58:346–353

    Article  CAS  PubMed  Google Scholar 

  125. Vanam U, Pandey V, Prabhu PR et al (2009) Evaluation of immunoprophylactic efficacy of Brugia malayi transglutaminase (BmTGA) in single and multiple antigen vaccination with BmALT-2 and BmTPX for human lymphatic filariasis. Am J Trop Med Hyg 80:319–324, 166

    Article  CAS  PubMed  Google Scholar 

  126. Li BW, Chandrashekar R, Weil GJ (1993) Vaccination with recombinant filarial paramyosin induces partial immunity to Brugia malayi infection in jirds. J Immunol 150:1881–1885

    CAS  PubMed  Google Scholar 

  127. Zang X, Atmadja AK, Gray P et al (2000) The serpin secreted by Brugia malayi microfilariae, Bm-SPN-2, elicits strong, but short-lived, immune responses in mice and humans. J Immunol 165:5161–5169

    Article  CAS  PubMed  Google Scholar 

  128. Dixit S, Gaur RL, Sahoo MK et al (2006) Protection against L3 induced Brugia malayi infection in Mastomys coucha pre-immunized with BmAFII fraction of the filarial adult worm. Vaccine 24:5824–5831

    Article  CAS  PubMed  Google Scholar 

  129. Kushwaha S, Singh PK, Rana AK et al (2013) Immunization of Mastomys coucha with Brugia malayi recombinant trehalose-6-phosphate phosphatase results in significant protection against homologous challenge infection. PLoS One 8:e72585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nag JK, Shrivastava N, Gupta J et al (2013) Recombinant translation initiation factor-1 of Wolbachia is an immunogenic excretory secretory protein that elicits Th2 mediated immune protection against Brugia malayi. Comp Immunol Microbiol Infect Dis 36:25–38

    Article  PubMed  Google Scholar 

  131. Singh PK, Kushwaha S, Rana AK et al (2014) Cofactor independent phosphoglycerate mutase of Brugia malayi induces a mixed Th1/Th2 type immune response and inhibits larval development in the host. Biomed Res Int 2014:590281

    PubMed  PubMed Central  Google Scholar 

  132. Anand SB, Murugan V, Prabhu PR et al (2008) Comparison of immunogenicity, protective efficacy of single and cocktail DNA vaccine of Brugia malayi abundant larval transcript (ALT-2) and thioredoxin peroxidase (TPX) in mice. Acta Trop 107:106–112

    Article  CAS  PubMed  Google Scholar 

  133. Dash Y, Ramesh M, Kalyanasundaram R et al (2011) Granuloma formation around filarial larvae triggered by host responses to an excretory/secretory antigen. Infect Immun 79:838–845

    Article  CAS  PubMed  Google Scholar 

  134. Shrivastava N, Singh PK, Nag JK et al (2013) Immunization with a multisubunit vaccine considerably reduces establishment of infective larvae in a rodent model of Brugia malayi. Comp Immunol Microbiol Infect Dis 36:507–519

    Article  PubMed  Google Scholar 

  135. Prince PR, Madhumathi J, Anugraha G et al (2014) Tandem antioxidant enzymes confer synergistic protective responses in experimental filariasis. J Helminthol 88:402–410, 178

    Article  CAS  PubMed  Google Scholar 

  136. Sunish IP, Kalimuthu M, Rajendran R et al (2015) Decline in lymphatic filariasis transmission with annual mass drug administration using DEC with and without albendazole over a 10 year period in India. Parasitol Int 64:1–4

    Article  CAS  PubMed  Google Scholar 

  137. Stolk WA, Stone C, de Vlas SJ (2015) Modelling lymphatic filariasis transmission and control: modelling frameworks, lessons learned and future directions. Adv Parasitol 87:249–291

    Article  PubMed  Google Scholar 

  138. Kisoka WJ, Tersbol BP, Meyrowitsch DW et al (2015) Community members’ perceptions of mass drug administration for control of lymphatic filariasis in rural and urban Tanzania. J Biosoc Sci 19:1–19

    Google Scholar 

  139. Adhikari RK, Sherchand JB, Mishra SR et al (2014) Factors determining non-compliance to mass drug administration for lymphatic filariasis elimination in endemic districts of Nepal. J Nepal Health Res Counc 12:124–129

    CAS  PubMed  Google Scholar 

  140. Rebollo MP, Sambou SM, Thomas B et al (2015) Elimination of lymphatic filariasis in the Gambia. PLoS Negl Trop Dis 9:e0003642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaswamy Kalyanasundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kalyanasundaram, R. (2016). Lymphatic Filariasis: Current Status of Elimination Using Chemotherapy and the Need for a Vaccine. In: Saxena, A. (eds) Communicable Diseases of the Developing World. Topics in Medicinal Chemistry, vol 29. Springer, Cham. https://doi.org/10.1007/7355_2015_5002

Download citation

Publish with us

Policies and ethics