Skip to main content

Advertisement

Log in

Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Glutathione-S-transferase(s) (GST) enzyme from Brugia malayi has been exploited as a target in lymphatic filariasis therapeutics. An active GST is a homodimer of a 208 residue long monomer consisting of two domains, a smaller α/β domain and a larger α domain. The components of the glutathione (GSH) system, mainly GST enzymes, are critical antioxidant and detoxification system responsible for the long-term existence of filarial worms in mammalian host; hence they are major chemotherapeutic targets in filarial species. In the present study, 58 phytochemicals from 10 plants, predicted and reported to have potential nematicidal activity and ADMET satisfaction, have been docked to GST enzyme of B. malayi to assess their binding affinity and consequently their inhibitory activity. A comparative study has been made with commonly employed chemotherapeutic GST inhibitors such as cibacron-blue, butylated hydroxyanisole, hexyl glutathione and ethacrynic acid. In vitro effects of potential drug like compound from in silico results have been done for validation of docking studies. In vitro assay revealed efficacy in GST inhibition in the following compounds: linalool (97.50%), alpha-pinene (90.00%), strychnine (87.49%), vanillin (84.99%), piperine (79.99%), isoeugenol (62.49%), curcumin (57.49%), beta-caryophyllene (39.50%), cinnamic acid (27.49%), capsaicin (19.99%), citronellol (19.99%) and geraniol (17.49%). An online database (www.spicebioinfo.res.in/gstleadbase) has been developed, which will serve as a useful repository of information on GST inhibitors for future development of drugs against filarial nematodes. These findings thus suggest that the above phytochemicals could be potentially developed as lead molecules for targeting GST of lymphatic filarial parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO (2002) Lymphatic Filariasis: The Disease and Its Control. Technical Report 71. Geneva

  2. WHO (2008) Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Rec 83:333–341

    Google Scholar 

  3. Liu LX, Weller PF (1996) Antiparasitic drugs. N Engl J Med 334:1178–1184

    Article  CAS  Google Scholar 

  4. Oliveira-Menezes A, Lins R, Norões J, Dreyer G, Lanfredi RM (2007) Comparative analysis of a chemotherapy effect on the cuticular surface of Wuchereria bancrofti adult worms in vivo. Parasitol Res 101:1311–1317

    Article  CAS  Google Scholar 

  5. Bajpai P, Verma SK, Katiyar D, Tewari N, Tripathi RP, Bansal I, Saxena JK, Misra-Bhattacharya S (2005) Search for new prototypes for the chemotherapy of filariasis: a chemotherapeutic and biochemical approach. Parasitol Res 95:383–390

    Article  Google Scholar 

  6. Srinivasan L, Mathew N, Muthuswamy K (2009) In vitro antifilarial activity of glutathione-S-transferase inhibitors. Parasitol Res 105:1179–1182

    Article  Google Scholar 

  7. Cookson E, Blaxter ML, Selkirk ME (1992) Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homolog of glutathione peroxidase (filariasis/Brugia/antioxidant/surface protein). Proc Natl Acad Sci USA 89:5837–5841

    Article  CAS  Google Scholar 

  8. Ahmad R, Srivastava AK (2008) Inhibition of glutathione-S-transferase from Plasmodium yoelii by protoporphyrin IX, cibacron blue and menadione: implications and therapeutic benefits. Parasitol Res 102:805–807

    Article  Google Scholar 

  9. Michele AM, DeWight RW, John AT (1995) Crystal structures of aschistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistomal drug Praziquantel. J Mol Biol 246:21–27

    Article  Google Scholar 

  10. Harwaldt P, Rahlfs S, Becker K (2002) Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol Chem 383:821–830

    Article  CAS  Google Scholar 

  11. Ahmad R, Srivastava AK (2007) Purification and biochemical characterization of cytosolic glutathione-S-transferase from malarial parasites Plasmodium yoelii. Parasitol Res 100:581–588

    Article  Google Scholar 

  12. Brophy PM, Campbell AM, van Eldik AJ, Teesdale-Spittle PH, Liebau E, Wang MF (2000) Beta-carbonyl substituted glutathione conjugates as inhibitors of O. volvulus GST2. Bioorg Med Chem Lett 10:979–981

    Article  CAS  Google Scholar 

  13. Liebau E, Wildenburg G, Brophy PM, Walter RD, Henkle-Duhrsen K (1996) Biochemical analysis, gene structure and localization of the 24 kDa glutathione S-transferase from Onchocerca volvulus. Mol Biochem Parasitol 80:27–39

    Article  CAS  Google Scholar 

  14. Rao UR, Salinas G, Mehta K, Klei TR (2000) Identification and localization of glutathione S-transferase as a potential target enzyme in Brugia species. Parasitol Res 86:908–915

    Article  CAS  Google Scholar 

  15. Zhao TJ, Singhal SS, Piper TJ, Cheng JZ, Pandya U, Clark-wronski J, Awasthi S, Awasthi YC (1999) The role of human glutathione-S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Arch Biochem Biophys 367:216–224

    Article  CAS  Google Scholar 

  16. Lüersen K, Walter RD, Müller S (1998) The putative γ - glutamylcysteine synthetase from Plasmodium falciparum contains large insertions and a variable tandem repeat. Mol Biochem Parasitol 98:131–142

    Article  Google Scholar 

  17. Bhargavi R, Vishwakarma S, Murty US (2005) Modeling analysis of GST (glutathione-S-transferases) from Wuchereria bancrofti and Brugia malayi. Bioinform 1:25–27

    Google Scholar 

  18. Jones DT (1999) GenTHREADER: an efficient and reliable protein folds recognition method for genomic sequences. J Mol Biol 287:797–815

    Article  CAS  Google Scholar 

  19. Okunade AL (2002) Ageratum conyzoides L. (Asteraceae). Fitoterapia 73:1–16

    Article  CAS  Google Scholar 

  20. Kaefer CM, Milner JA (2008) The role of herbs and spices in cancer prevention. J Nutr Biochem 19:347–361

    Article  CAS  Google Scholar 

  21. Luthra PM, Singh R, Chandra R (2001) Therapeutic uses of Curcuma longa (Turmeric). Indian J Clin Biochem 16:153–160

    Article  Google Scholar 

  22. Filimonov DA, Poroikov VV (1996) PASS: Computerized prediction of biological activity spectra for chemical substances. Bioactive Compound Design. Possibilities for Industrial Use. BIOS Scientific, Oxford, pp 47–56

    Google Scholar 

  23. Lee Sung Kwang (2005) In silico high-throughput screening for ADME/Tox properties: PreADMET program. Abstr Conf Comb Chem Jpn 21:22–28

    Google Scholar 

  24. Schönberger H, Schwab CH, Hirsch AJ, Gasteiger J (2000) Molecular modelling of fullerene dendrimers. J Mol Model 6:379–395

    Article  Google Scholar 

  25. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34:1000–1008

    Article  CAS  Google Scholar 

  26. Peng C, Ayali PY, Schlegel HB, Frisch MJ (1995) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 16:49–51

    Google Scholar 

  27. Hendlich M, Rippmann F, Barnickel G (1997) Mapping of protein surface cavities and prediction of enzyme class by a self-organizing neural network. J Mol Graph 15(359–363):389

    Google Scholar 

  28. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  Google Scholar 

  29. Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49:84–96

    Article  CAS  Google Scholar 

  30. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  31. Gupta S, Bhandari YP, Reddy MV, Harinath BC, Rathaur S (2005) Setaria cervi: immunoprophylactic potential of glutathione-S-transferase against filarial parasite Brugia malayi. Exp Parasitol 109:252–255

    Article  CAS  Google Scholar 

  32. Morrison CA, Colin T, Sexton JL, Bowen F, Wicker J, Friedel T, Spithill TW (1996) Protection of cattle against Fasciola hepatica infection by vaccination with glutathione S-transferase. Vaccine 14:1603–1612

    Article  CAS  Google Scholar 

  33. Grezel D, Capron M, Grzych JM, Fontaine J, Lecocq JP, Capron A (1993) Protective immunity induced in rat schistosomiasis by a single dose of the Sm28 GST recombinant antigen: effector mechanisms involving IgE and IgA antibodies. Eur J Immunol 23:454–460

    Article  CAS  Google Scholar 

  34. Sexton JL, Milner AR, Panaccio M, Waddington J, Wijffels G, Chandler D, Thompson C, Wilson L, Spithill TW, Mitchell GF, Campbell NJ (1990) Glutathione S-transferase: novel vaccine against Fasciola hepatica infection in sheep. J Immunol 145:3905–3910

    CAS  Google Scholar 

  35. Veerapathran A, Dakshinamoorthy G, Gnanasekar M, Reddy MVR, Kalyanasundaram R (2009) Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoS Negl Trop Dis 3:e457

    Article  Google Scholar 

  36. Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS (1999) Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59:597–601

    CAS  Google Scholar 

  37. Oetari S, Sudibyo M, Commandeur JNM, Samhoedi R, Vermeulen NPE (1996) Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. Biochem Pharmacol 51:39–45

    Article  CAS  Google Scholar 

  38. Awasthi S, Pandya U, Singhal SS, Lin JT, Thiviyanathan V, Seifert WE Jr, Awasthi YC, Ansari GAS (2000) Curcumin–glutathione interactions and the role of human glutathione S-transferase P1-1. Chem Biol Interact 128:19–38

    Article  CAS  Google Scholar 

  39. Deng XK, Yin W, Li WD, Yin FZ, Lu XY, Zhang XC, Hua ZC, Cai BC (2006) The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. J Ethnopharmacol 106:179–186

    Article  CAS  Google Scholar 

  40. Peana AT, D'aquila PS, Panin F, Serra G, Pippia P, Moretti MDL (2002) Antiinflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 9:721–726

    Article  CAS  Google Scholar 

  41. Reen RK, Jamwal DS, Taneja SC, Koul JL, Dubey RK, Wiebel FJ, Singh J (1993) Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochem Pharmacol 46:229–238

    Article  CAS  Google Scholar 

  42. Singh J, Dubey RK, Atal CK (1986) Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: evidence that piperine lowers the endogeneous UDP-glucuronic acid content. J Pharmacol Exp Ther 236:488–489

    CAS  Google Scholar 

  43. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge with thanks the facilities provided by Director, Indian Institute of Spices Research (IISR), Calicut; Dr. Santhosh J. Eapen, Co-ordinator, Distributed Information Sub-Centre (DBT, New Delhi), of IISR (Indian Institute of Spices Research), Dr. O.K. Sindu, District Veterinary Centre Campus, Calicut, who supplied the filarial nematodes Dirofilaria immitis and the assistance rendered by Ms. M. Dinsha, Senior Research Fellow, IISR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamina Azeez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azeez, S., Babu, R.O., Aykkal, R. et al. Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes. J Mol Model 18, 151–163 (2012). https://doi.org/10.1007/s00894-011-1035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1035-2

Keywords

Navigation