Skip to main content

Unique Contributions from Comparative Auditory Research

  • Chapter
  • First Online:
Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Choosing the appropriate animal model(s) is a key feature in many scientific studies. But how does one decide which animal is the “right” one to answer a specific question? This is the central aim of comparative research. The classic comparative approach involves studying animals with different but carefully chosen phylogenetic backgrounds and thereby deducing principles that are either basic, and thus shared by common descent, or specializations that are novel to a particular group. There is abundant evidence that comparative studies have made important contributions to hearing research. Prominent examples are the basic mechanisms of hair cell transduction, revealed largely in frog and turtle preparations, the neural processing of binaural cues for sound localization in the barn owl, or the neural processing of learned vocalizations examined in songbirds. The current volume is not centered on one coherent topic but aims instead to highlight particular recent contributions of comparative work. It is hoped to maintain and inspire an appreciation of comparative work, especially in the age of genetics when the question whether the species’ neuroethology is appropriate for the problem at hand is less and less frequently asked. A total of 12 chapters discuss current topics of hair cell transduction and amplification, evolution of hair-cell polarity, evolution and neuroethology of hearing and instructive auditory oddities, all studied in a broad phylogenetic variety of animal models, from insects to bats and whales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bayly, R., & Axelrod, J. D. (2011). Pointing in the right direction: New developments in the field of planar cell polarity. Nature Reviews Genetics, 12, 385–391.

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747–759.

    Article  CAS  PubMed  Google Scholar 

  • Brainard, M. S., & Doupe, A. J. (2000). Auditory feedback in learning and maintenance of vocal behaviour. Nature Reviews Neuroscience, 1, 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, R. L. (1988). Vertebrate paleontology and evolution. New York: W. H. Freeman.

    Google Scholar 

  • Chiappe, M. E., Kozlov, A. S., & Hudspeth, A. J. (2007). The structural and functional differentiation of hair cells in a lizard’s basilar papilla suggests an operational principle of amniote cochleas. The Journal of Neuroscience, 27(44), 11978–11985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J. (2011). Vertebrate pressure-gradient receivers. Hearing Research, 273, 37–45.

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Carr, C. E. (2008). Evolution of a sensory novelty: Tympanic ears and the associated neural processing. Brain Research Bulletin, 75, 365–370.

    Article  PubMed Central  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., Tang, Y., & Carr, C. E. (2011). Binaural processing by the gecko auditory periphery. Journal of Neurophysiology, 105(5), 1992–2004.

    Article  PubMed  Google Scholar 

  • Clack, J. A., & Allin, E. (2004). The evolution of single- and multiple-ossicle ears in fishes and tetrapods. In G. A. Manley, A. Popper & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 128–163). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Corfield, J., Kubke, M. F., Parsons, S., Wild, J. M., & Köppl, C. (2011). Evidence for an auditory fovea in the New Zealand kiwi (Apteryx mantellii). PloS One, 6(8), e23771.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fettiplace, R., & Ricci, A. J. (2006). Mechanoelectrical transduction in auditory hair cells. In R. A. Eatock, R. R. Fay & A. N. Popper (Eds.), Vertebrate hair cells (pp. 154–203). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Goodrich, L. V., & Strutt, D. (2011). Principles of planar polarity in animal development. Development, 138(10), 1877–1892.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, H. E. (1999). The symbiotic nature of animal research. Perspectives in Biology and Medicine, 43, 128–139.

    CAS  PubMed  Google Scholar 

  • Jørgensen, M. B., & Christensen-Dalsgaard, J. (1997). Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria.1. Spike rate responses. Journal of Comparative Physiology A - Sensory Neural and Behavioral Physiology, 180(5), 493–502.

    Article  Google Scholar 

  • Kazmierczak, P., & Müller, U. (2012). Sensing sound: Molecules that orchestrate mechanotransduction by hair cells. Trends in the Neurosciences, 35(4), 220–229.

    Article  CAS  Google Scholar 

  • Klump, G. M. (2000). Sound localization in birds. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative hearing: Birds and reptiles (pp. 249–307). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Konishi, M. (2003). Coding of auditory space. Annual Review of Neuroscience, 26, 31–55.

    Article  CAS  PubMed  Google Scholar 

  • Köppl, C. (2011). Evolution of the octavolateral efferent system. In D. Ryugo, R. R. Fay, & A. N. Popper (Eds.), Auditory and vestibular efferents (pp. 217–259). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Krogh, A. (1929). The progress of physiology. The American Journal of Physiology, 90(2), 243–251.

    Google Scholar 

  • Kuba, H. (2007). Cellular and molecular mechanisms of avian auditory coincidence detection. Neuroscience Research, 59, 370–376.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A. (2012). Evolutionary paths to mammalian cochleae. Journal of the Association for Research in Otolaryngology: JARO, 13, 733–743.

    Article  PubMed  Google Scholar 

  • Manley, G. A., & Köppl, C. (1998). Phylogenetic development of the cochlea and its innervation. Current Opinion in Neurobiology, 8(4), 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A., & Clack, J. A. (2004). An outline of the evolution of vertebrate hearing organs. In G. A. Manley, A. Popper & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 1–26). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Manley, G. A., & Ladher, R. (2008). Phylogeny and evolution of ciliated mechanoreceptor cells. In P. Dallos & D. Oertel (Eds.), Audition (pp. 1–34). San Diego: Academic Press.

    Google Scholar 

  • Manley, G. A., Köppl, C., & Sneary, M. (1999). Reversed tonotopic map of the basilar papilla in Gekko gecko. Hearing Research, 131, 107–116.

    Article  CAS  PubMed  Google Scholar 

  • May-Simera, H., & Kelley, M. W. (2012). Planar cell polarity in the inner ear. Current Topics in Developmental Biology, 101, 111–140.

    PubMed  Google Scholar 

  • Michelsen, A. (1998). Biophysics of sound localization in insects. In R. R. Hoy, A. N. Popper, & R. R. Fay (Eds.), Comparative hearing: Insects (pp. 18–62). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Popper, A. N., & Fay, R. R., Eds. (1995). Hearing by bats. New York: Springer Verlag.

    Google Scholar 

  • Puria, S., Fay, R. R., & Popper, A. N., Eds. (2013). The middle ear: Science, otosurgery, and technology. New York: Springer Science+Business Media.

    Google Scholar 

  • Sienknecht, U. J., Anderson, B. K., Parodi, R. M., Fantetti, K. N., & Fekete, D. M. (2011). Non-cell-autonomous planar cell polarity propagation in the auditory sensory epithelium of vertebrates. Developmental Biology, 342, 27–39.

    Article  Google Scholar 

  • Tan, X., Pecka, J. L., Tang, J., Okoruwa, O. E., Zhang, Q., Beisel, K. W., & He, D. Z. Z. (2011). From zebrafish to mammal: Functional evolution of prestin, the motor protein of cochlear outer hair cells. The Journal of Neurophysiology, 105, 36–44.

    Article  Google Scholar 

  • Vergne, A. L., Aubin, T., Martin, S., & Mathevon, N. (2012). Acoustic communication in crocodilians: Information encoding and species specificity of juvenile calls. Animal Cognition, 15(6), 1095–1109.

    Article  PubMed  Google Scholar 

  • Wever, E. G. (1978). The reptile ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Köppl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Köppl, C., Manley, G.A. (2013). Unique Contributions from Comparative Auditory Research. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_21

Download citation

Publish with us

Policies and ethics