Skip to main content

Biophysics of Sound Localization in Insects

  • Chapter
Comparative Hearing: Insects

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 10))

Abstract

Humans use two mechanisms for detecting the direction of sound waves, based on diffraction and time of arrival, respectively (Shaw 1974, Yost and Gourevitch 1987, Brown 1994). The presence of the body may disturb the sound wave so that the sound pressure at the surface of the body differs from that in the undisturbed sound wave (diffraction). The sound pressure at a particular position on the surface, for example, the location of an ear, varies with the direction of sound incidence. Diffraction occurs when the dimensions of the body (head) are larger than one-tenth the wavelength of the sound. The sound spectra at the two ears differ for most sound directions if the ears are some distance apart. It is thus possible for the brain to estimate the direction of the sound source by comparing the sound spectra at the two ears. This task is easier with broad-band sounds than with pure tones or narrow-band sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum H (1940) Über Lautäusserungen and Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta and Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352.

    Article  Google Scholar 

  • Batschelet E (1981) Circular Statistics in Biology. London: Academic Press.

    Google Scholar 

  • Belton P (1974) An analysis of direction finding in male mosquitoes. In: Barton Browne L (ed) Experimental Analysis of Insect Behaviour. Berlin: Springer-Verlag, pp. 139–148.

    Chapter  Google Scholar 

  • Bennet-Clark HC (1971) Acoustics of insect song. Nature 234:255–259.

    Article  Google Scholar 

  • Beranek LL (1954) Acoustics. New York: McGraw-Hill (new edition published by the American Institute of Physics 1986).

    Google Scholar 

  • Brown CH (1994) Sound localization. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer-Verlag, pp. 57–96.

    Chapter  Google Scholar 

  • Brownell P, Farley RD (1979) Orientations to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanisms of target localization. J Comp Physiol 131:31–38.

    Article  Google Scholar 

  • Ewing AM (1989) Arthropod Bioacoustics: Neurobiology and Behavior. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Fletcher NH, Thwaites S (1979) Acoustical analysis of the auditory system of the cricket Teleogryllus commodus (Walker). J Acoust Soc Am 66:350–357.

    Article  PubMed  CAS  Google Scholar 

  • Fonseca PJ, Popov AV (1997) Physical analysis of directional hearing in the cicada Cicada barbara lusitanica. J Comp Physiol A, 180:417–427.

    Article  Google Scholar 

  • Helversen D von, Helversen O von (1983) Species Recognition and Acoustic Localization in Acridid Grasshoppers: A Behavioral Approach. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 95–107.

    Chapter  Google Scholar 

  • Helversen D von, Helversen O von (1995) Acoustic pattern recognition in ortho-pteran insects: Parallel or serial processing? J Comp Physiol A 177:767–774.

    Article  Google Scholar 

  • Helversen D von, Rheinlaender J (1988) Interaural intensity and time discrimination in an unrestrained grasshopper: a tentative behavioral approach. J Comp Physiol A 162:333–340.

    Article  Google Scholar 

  • Hergenröder R, Barth FG (1983) Vibratory signals and spider behaviour: how do the sensory inputs from the eight legs interact in orientation? J Comp Physiol A 152:361–371.

    Article  Google Scholar 

  • Hill KG (1974) Carrier frequency as a factor in phonotactic behaviour of female crickets Teleogryllus commodus. J Comp Physiol 93:7–18.

    Article  Google Scholar 

  • Hill KG, Boyan GS (1976) Directional hearing in crickets. Nature 262:390–391.

    Article  PubMed  CAS  Google Scholar 

  • Hoy RR, Paul RC (1973) Genetic control of song specificity in crickets. Science 180:82–83.

    Article  PubMed  CAS  Google Scholar 

  • Johnston C (1855) Auditory apparatus of the Culex mosquito. Q J Microsc Sci 3:97–102.

    Google Scholar 

  • Kramer E (1976) The orientation of walking honeybees in odour fields with small concentration gradients. Physiol Entomol 1:27–37.

    Article  Google Scholar 

  • Larsen ON (1981) Mechanical time resolution in some insect ears. II. Impulse sound transmission in acoustic tracheal tubes. J Comp Physiol 143:297–304.

    Article  Google Scholar 

  • Larsen ON (1995) Acoustic equipment and sound field calibration. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in Comparative Psychoacoustics. Basel: Birkhäuser Verlag, pp. 31–45.

    Google Scholar 

  • Larsen ON, Michelsen A (1978) Biophysics of the Ensiferan ear. III. The cricket ear as a four-input system. J Comp Physiol 123:219–227.

    Article  Google Scholar 

  • Lewis B (1983) Directional cues for auditory localization. In: Lewis B (ed). Bioa-coustics, a Comparative Approach. London: Academic Press, pp. 233–257.

    Google Scholar 

  • Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus Degeer (Saltatoria, Gryllidae). Z Morph Tiere 77:285–315.

    Article  Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. Z Vergl Physiol 71:49–128.

    Article  Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali MA (ed) Sensory Ecology. New York: Plenum Press, pp. 345–373.

    Chapter  Google Scholar 

  • Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics. London: Academic Press, pp. 3–38.

    Google Scholar 

  • Michelsen A, Larsen ON (1978) Biophysics of the Ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203.

    Article  Google Scholar 

  • Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Mark H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 321–331.

    Chapter  Google Scholar 

  • Michelsen A, Löhe G (1995) Tuned directionality in cricket ears. Nature 375:639.

    Article  CAS  Google Scholar 

  • Michelsen A, Rohrseitz K (1995) Directional sound processing and interaural sound transmission in a small and a large grasshopper. J Exp Biol 198:1817–1827.

    PubMed  Google Scholar 

  • Michelsen A, Rohrseitz K (1997) Sound localization in a habitat: an analytical approach to quantifying the degradation of directional cues. Bioacoustics, 7:291–313.

    Article  Google Scholar 

  • Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol A 161:633–643.

    Article  Google Scholar 

  • Michelsen A, Hedwig B, Elsner N (1990) Biophysical and neurophysiological effects of respiration on sound reception in the migratory locust Locusta migratoria. In: Gribakin FG, Wiese K, Popov AV (eds). Sensory Systems and Communication in Arthropods. Basel: Birkhäuser Verlag, pp. 199–203.

    Google Scholar 

  • Michelsen A, Heller K-G, Stumpner A, Rohrseitz K (1994) A new biophysical method to determine the gain of the acoustic trachea in bushcrickets. J Comp Physiol A 175:145–151.

    Article  PubMed  CAS  Google Scholar 

  • Michelsen A, Popov AV, Lewis B (1994) Physics of directional hearing in the cricket Gryllus bimaculatus. J Comp Physiol A 175:153–164.

    Article  Google Scholar 

  • Miller LA (1977) Directional hearing in the locust Schistocerca gregaria. Forskäl (Acrididae, Orthoptera). J Comp Physiol 119:85–98.

    Article  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48.

    PubMed  CAS  Google Scholar 

  • Morse PM (1948) Vibration and Sound. New York: McGraw-Hill (new edition published by the American Institute of Physics 1981).

    Google Scholar 

  • Mohl B, Miller L (1976) Ultrasonic clicks produced by the peacock butterfly: a possible bat-repellent mechanism. J Exp Biol 64:639–644.

    Google Scholar 

  • Paul RC, Walker TJ (1979) Arboreal singing in a burrowing cricket, Anurogryllus arboreus. J Comp Physiol 132:217–224.

    Article  Google Scholar 

  • Payne R, Roeder KD, Wallman J (1966) Directional sensitivity of the ears of noctuid moths. J Exp Biol 44:17–31.

    PubMed  CAS  Google Scholar 

  • Pierce AD (1981) Acoustics: An Introduction to Its Physical Principles and Applications. New York: McGraw-Hill (new edition published by the American Institute of Physics 1989).

    Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639.

    PubMed  CAS  Google Scholar 

  • Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens. Pflügers Arch 155:193–200.

    Article  Google Scholar 

  • Rheinlaender J, Römer H (1986) Insect hearing in the field. I. The use of identified nerve cells as “biological microphones.” J Comp Physiol A 158:647–651.

    Article  Google Scholar 

  • Risler H, Schmidt K (1967) Der Feinbau der Scolopidien im Johnstonschen Organ von Aedes aegypti L. Z Naturforsch 22B:759–762.

    Google Scholar 

  • Roeder KD (1967) Nerve Cells and Insect Behavior, rev. ed. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptor-elemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122.

    Article  Google Scholar 

  • Schildberger K, Huber F, Wohlers DW (1989) Central auditory pathway: neural correlates of phonotactic behavior. In: Huber F, Moore TE, Loher W (eds). Cricket Behavior and Neurobiology. Ithaca, NY: Cornell University Press, pp. 423–458.

    Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L (Orthoptera, Gryllidae). I. Mechanisms of acoustic orientation in intact female crickets. J Comp Physiol A 148:431–444.

    Article  Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1983). Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). II. Acoustic orientation of female crickets after occlusion of single sound entrances. J Comp Physiol 152:257–264.

    Article  Google Scholar 

  • Schnitzler H-U, Menne D, Kober R, Heblich K (1983). The acoustical image of fluttering insects in echo-locating bats. In: Huber F, Markl H (eds). Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 235–250.

    Chapter  Google Scholar 

  • Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 20:1–154.

    Google Scholar 

  • Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. V/1. Auditory System, Anatomy, Physiology (Ear). Berlin: Springer Verlag, pp. 454–490.

    Google Scholar 

  • Skudrzyk E (1971) The Foundations of Acoustics. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium — an unorthodox sensory capacity. Naturwissenschaften 66:452–461.

    Article  Google Scholar 

  • Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket Behavior and Neurobiology. Ithaca, NY: Cornell University Press. pp. 310–339.

    Google Scholar 

  • Weber T, Thorson J, Huber F (1981) Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol A 141:215–232.

    Article  Google Scholar 

  • Wendler G, Löhe G (1993) The role of the medial septum in the acoustic trachea of the cricket Gryllus bimaculatus. I. Importance for efficient phonotaxis. J Comp Physiol A 173:557–564.

    Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94.

    Article  Google Scholar 

  • Wiley RH, Richards DG (1982) Adaptations for acoustic communication in birds: Transmission and signal detection. In: Kroodsma DE, Miller EH (eds). Acoustic Communication in Birds, Vol. 1. New York: Academic Press, pp. 131–181.

    Google Scholar 

  • Yager DD, Hoy RR (1987) The midline metathoracic ear of the praying mantis, Mantis religiosa. Cell Tissue Res 250:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Yost WA, Gourevitch G, eds. (1987) Directional Hearing. New York: Springer-Verlag.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michelsen, A. (1998). Biophysics of Sound Localization in Insects. In: Hoy, R.R., Popper, A.N., Fay, R.R. (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0585-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0585-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6828-4

  • Online ISBN: 978-1-4612-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics