Skip to main content

Biological Processes for Hydrogen Production

  • Chapter
  • First Online:
Anaerobes in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 156))

Abstract

Methane is produced usually from organic waste in a straightforward anaerobic digestion process. However, hydrogen production is technically more challenging as more stages are needed to convert all biomass to hydrogen because of thermodynamic constraints. Nevertheless, the benefit of hydrogen is that it can be produced, both biologically and thermochemically, in more than one way from either organic compounds or water. Research in biological hydrogen production is booming, as reflected by the myriad of recently published reviews on the topic. This overview is written from the perspective of how to transfer as much energy as possible from the feedstock into the gaseous products hydrogen, and to a lesser extent, methane. The status and remaining challenges of all the biological processes are concisely discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AcCoA:

Acetyl-Coenzyme A

AD:

Anaerobic digestion

BES:

Bio-electrochemical systems

BHP:

Biological hydrogen process

CBC:

Calvin–Benson cycle

CEF:

Cyclic electron flow

CEM:

Cation exchange membrane

CSTR:

Continuous stirred tank reactor

DF:

Dark fermentation

DFE:

Dark fermentation effluent

DOT:

Dissolved oxygen tension

DW:

Dry weight

E EMF :

Electromotive force (V)

E MEC :

Overall actual energy requirement of the system (V)

EMP:

Embden–Meyerhof pathway

EOC:

Excreted organic compounds

Fd:

Ferredoxin

FHL:

Formate hydrogen lyase

FNR:

Ferredoxin:NAD(P)+ oxidoreductase

H2ase:

Hydrogenase

HE:

Hydroelectrogenesis

HRT:

Hydraulic retention time (h)

I :

Current (A)

I V :

Volumetric current density (A m−2)

LCA:

Life cycle assessment

MEC:

Microbial electrolysis cell

MFC:

Microbial fuel cell

PBR:

Photobioreactor

PF:

Photofermentation

PFL:

Pyruvate formate lyase

PFOR:

Pyruvate ferredoxin:oxidoreductase

P H2 :

Partial hydrogen pressure (Pa)

PHB:

Polyhydroxybutyrate

PS I:

Photosystem I

PS II:

Photosystem II

Q H2 :

Volumetric hydrogen productivity (mol H2 L−1 h−1)

r CAT :

Cathodic hydrogen recovery

RubisCO:

Ribulose 1,5-biphosphate carboxylase/oxygenase

R Ω :

All the resistances in the system (Ω)

UA:

Up-flow anaerobic reactor

W H2 :

Energy content of hydrogen produced (J)

W P :

Energy of the power source (J)

W S :

Energy of the converted substrate (J)

Y H2 :

Hydrogen yield (mol H2/mol substrate)

η A :

Sum of contributions to the overpotential of the anode (V)

η C :

Sum of contributions to the overpotential of the cathode (V)

η TOT :

Overall energy recovery of the system

References

  1. Navigant Research (2012) http://www.navigantresearch.com/newsroom/global-biogas-market-to-nearly-double-in-size-to-33-billion-by-2022

  2. MarketsandMarkets (2014) http://www.marketsandmarkets.com/PressReleases/hydrogen.asp

  3. Mansilla C, Avril S, Imbach J, Le Duigou A (2012) CO2-free hydrogen as a substitute to fossil fuels: what are the targets? Prospective assessment of the hydrogen market attractiveness. Int J Hydrog Energy 37:9451–9458

    Article  CAS  Google Scholar 

  4. Adessi A, de Philippis R, Hallenbeck PC (2012) Combined systems for maximum substrate conversion. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuel production. Springer, New York, pp 107–126

    Chapter  Google Scholar 

  5. Guwy AJ, Dinsdale RM, Kim JR, Massanet-Nicolau J, Premier G (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542

    Article  CAS  Google Scholar 

  6. Liu Z, Zhang C, Lu Y, Wu X, Wang L, Wang L, Han B, Xing X-H (2013) States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 135:293–303

    Google Scholar 

  7. Bundhoo MAZ, Mohee R, Hassan MA (2015) Effects of pre-treatment technologies on dark fermentative biohydrogen production: a review. J Environ Manag 157:20–48

    Article  CAS  Google Scholar 

  8. Sen U, Shakdwipee M, Banerjee R (2008) Status of biological hydrogen production. J Sci Ind Res 67:980–993

    CAS  Google Scholar 

  9. Escapa A, Gómez X, Tartakovsky B, Morán A (2012) Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study. Int J Hydrog Energy 37:18641–18653

    Article  CAS  Google Scholar 

  10. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  Google Scholar 

  11. Show K-Y, Lee D-J, Chang J-S (2011) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533

    Article  CAS  Google Scholar 

  12. Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsyganko AA (2006) Demonstration of sustained hydrogen production by immobilized, sulphur-deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy 5:659–667

    Article  CAS  Google Scholar 

  13. Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T (2002) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulphur deprivation. Int J Hydrog Energy 27:1431–1439

    Article  CAS  Google Scholar 

  14. Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301

    Article  CAS  Google Scholar 

  15. Li X, Dai Z-Z, Wang Y-H, Zhang S-L (2011) Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using fed-batch operation based on ORP level. Int J Hydrog Energy 36:12794–12802

    Article  CAS  Google Scholar 

  16. Wu S-Y, Hung C-H, Lin C-N, Chen H-W, Lee A-S (2006) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 93:934–946

    Article  CAS  Google Scholar 

  17. O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules. Int J Hydrog Energy 33:6498–6508

    Article  CAS  Google Scholar 

  18. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  CAS  Google Scholar 

  19. Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrog Energy 39:3127–3141

    Article  CAS  Google Scholar 

  20. Adessi A, De Philippis R (2014) Photosynthesis and hydrogen production in purple non sulphur bacteria: fundamental and applied aspects. In: Zannoni D, de Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38, Advances in photosynthesis and respiration. Springer, Dordrecht/Heidelberg/New York/London, pp 269–290

    Chapter  Google Scholar 

  21. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173

    Article  CAS  Google Scholar 

  22. Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E (2014) Photobioreactors design for hydrogen production. In: Zannoni D, de Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38, Advances in photosynthesis and respiration. Springer, Dordrecht/Heidelberg/New York/London, pp 291–320

    Chapter  Google Scholar 

  23. Sakurai H, Masukawa H, Kitashima M, Inoue K (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobiol C: Photochem Rev 17:1–25

    Article  CAS  Google Scholar 

  24. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  25. Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  CAS  Google Scholar 

  26. Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407

    Article  CAS  Google Scholar 

  27. Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano JM, Beyly A, Cuiné S, Plet J, Reiter IM, Genty B, Cournac L, Hippler M, Peltier G (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23:2619–2630

    Article  CAS  Google Scholar 

  28. Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    Article  CAS  Google Scholar 

  29. Marin-Navarro J, Esquivel MG, Moreno J (2010) Hydrogen production by Chlamydomonas reinhardtii revisited: rubisco as a biotechnological target. World J Microbiol Biotechnol 26:1785–1793

    Article  CAS  Google Scholar 

  30. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  CAS  Google Scholar 

  31. Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108:3941–3946

    Article  CAS  Google Scholar 

  32. Kontur WS, Noguera DR, Donohue TJ (2012) Maximizing reductant flow into microbial H2 production. Curr Opin Biotechnol 23:382–389

    Article  CAS  Google Scholar 

  33. Akkerman I, Janssen M, Rocha JMS, Reith JH, Wijffels RH (2003) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Dutch Biological Hydrogen Foundation, Petten, pp 124–145

    Google Scholar 

  34. Gianelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy 37:16951–16961

    Article  CAS  Google Scholar 

  35. Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:9–31

    Article  CAS  Google Scholar 

  36. Wu S, Li X, Yu J, Wang Q (2012) Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Bioresour Technol 123:184–188

    Article  CAS  Google Scholar 

  37. Eroglu I, Özgür E, Eroglu E, Yücel M, Gündüz U (2014) Applications of photofermentative hydrogen production. In: Zannoni D, de Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38, Advances in photosynthesis and respiration. Springer, Dordrecht/Heidelberg/New York/London, pp 237–267

    Chapter  Google Scholar 

  38. Androga DD, Özgür E, Eroglu I, Gündüz U, Yücel M (2011) Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. Int J Hydrog Energy 36:15583–15594

    Article  CAS  Google Scholar 

  39. Koku H, Eroglu I, Gündüz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329

    Article  CAS  Google Scholar 

  40. Harwood CS (2008) Nitrogenase-catalyzed hydrogen production by purple nonsulfur photosynthetic bacteria. In: Wall J, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, pp 259–271

    Chapter  Google Scholar 

  41. Yilmaz LS, Kontur WS, Sanders AP, Sohmen U, Donohue TJ, Noguera DR (2010) Electron partitioning during light- and nutrient-powered hydrogen production by Rhodobacter sphaeroides. Bioenergy Res 3:55–66

    Article  Google Scholar 

  42. Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012) Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. J Clean Prod 31:150–157

    Article  CAS  Google Scholar 

  43. Eroglu E, Eroglu I, Gündüz U, Yücel M (2008) Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresour Technol 99:6799–6808

    Article  CAS  Google Scholar 

  44. McKinlay JB, Harwood CS (2011) Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria. mBio 2, e00323-10

    Article  CAS  Google Scholar 

  45. Kars G, Gündüz U, Rakhely G, Yücel M, Eroglu I, Kovacs KL (2008) Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 33:3056–3060

    Article  CAS  Google Scholar 

  46. Avcioglu SG, Özgür E, Eroglu I, Yücel M, Gündüz Y (2011) Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses. Int J Hydrog Energy 36:11360–11368

    Article  CAS  Google Scholar 

  47. McKinlay JB, Harwood CS (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 107:11669–11675

    Article  CAS  Google Scholar 

  48. Jeong H-S, Jouanneau Y (2000) Enhanced nitrogenase activities in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 182:1208–1214

    Article  CAS  Google Scholar 

  49. Liu T, Li X, Zhou Z (2010) Improvement of hydrogen yield by hupR gene knock-out and nifA gene overexpression in Rhodobacter sphaeroides 6016. Int J Hydrog Energy 35:9603–9610

    Article  CAS  Google Scholar 

  50. Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012) Biohydrogen production by Rhodobacter capsulatus Hup- mutant in pilot solar tubular photobioreactor. Int J Hydrog Energy 37:16437–16445

    Article  CAS  Google Scholar 

  51. Gebicki J, Modigell M, Schumacher M, van der Burg J, Roebroeck E (2010) Comparison of two reactor concepts for anoxygenic H2 production by Rhodobacter capsulatus. J Clean Prod 18:S36–S42

    Article  CAS  Google Scholar 

  52. Özgür E, Afsar N, de Vrije T, Yücel M, Gündüz U, Claassen PAM, Eroglu I (2010) Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus. J Clean Prod 18:S23–S28

    Article  CAS  Google Scholar 

  53. Stevens P, Vertonghen C, de Vos P, de Ley J (1984) The effect of temperature and light intensity on hydrogen production by different Rhodopseudomonas capsulata strains. Biotechnol Lett 6:277–282

    Article  CAS  Google Scholar 

  54. Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Ant Leeuwenhoek 55:291–296

    Article  CAS  Google Scholar 

  55. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640

    Article  CAS  Google Scholar 

  56. Wrana N, Sparling R, Cicek N, Levin DB (2010) Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis. J Clean Prod 18:S105–S111

    Article  CAS  Google Scholar 

  57. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  58. Clauwaert P, Aelterman P, Pham TH, de Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Technol 79:901–913

    Article  CAS  Google Scholar 

  59. Logan BE (2008) Microbial fuel cells. Wiley, Hoboken

    Google Scholar 

  60. Yuan Y, Zhou SG, Tang JH (2013) In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH- and oxygen transport in microbial fuel cells. Environ Sci Technol 47:4911–4917

    Article  CAS  Google Scholar 

  61. Torres CI (2014) On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications. Curr Opin Biotechnol 27:107–114

    Article  CAS  Google Scholar 

  62. Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W (2008) Microbial fuel cells as an engineered ecosystem. In: Wall J, Harwood CS, Demain AL (eds) Bioenergy. ASM, Washington, pp 307–320

    Chapter  Google Scholar 

  63. Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methe BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfureducens. Environ Microbiol 8:1805–1815

    Article  CAS  Google Scholar 

  64. Lovley DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6:225–231

    Article  CAS  Google Scholar 

  65. Marsili E, Baron DB, Shikare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973

    Article  CAS  Google Scholar 

  66. Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76:561–568

    Article  CAS  Google Scholar 

  67. Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR (2006) Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568

    Article  CAS  Google Scholar 

  68. Rozendal RA, Jeremiasse A, Hamelers H, Buisman C (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  CAS  Google Scholar 

  69. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  70. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  CAS  Google Scholar 

  71. Tice RC, Kim Y (2014) Methanogenesis control by electric oxygen production in microbial electrolysis cells. Int J Hydrog Energy 39:3079–3086

    Article  CAS  Google Scholar 

  72. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873

    Article  CAS  Google Scholar 

  73. Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488

    Article  CAS  Google Scholar 

  74. Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    Article  CAS  Google Scholar 

  75. Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278

    Article  CAS  Google Scholar 

  76. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  CAS  Google Scholar 

  77. Yi H, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503

    Article  CAS  Google Scholar 

  78. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063

    Article  CAS  Google Scholar 

  79. Li CL, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  CAS  Google Scholar 

  80. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 25:175–243

    Article  CAS  Google Scholar 

  81. Kengen SWM, Goorissen HP, Verhaart M, Stams AJM, van Niel EWJ, Claassen PAM (2009) Biological hydrogen production by anaerobic microorganisms. In: Soetaert W, Vandamme E (eds) Biofuels. Wiley, Oxford, pp 197–222

    Chapter  Google Scholar 

  82. Pauss A, Andre G, Perrier M, Guiot SR (1990) Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microbiol 56:1636–1644

    CAS  Google Scholar 

  83. Willquist K, Claassen PAM, van Niel EWJ (2009) Evaluation of the influence of CO2 as stripping gas on the performance of the hydrogen producer Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 34:4718–4726

    Article  CAS  Google Scholar 

  84. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34:799–811

    Article  CAS  Google Scholar 

  85. Pawar SS, van Niel EWJ (2013) Thermophilic biohydrogen production: how far are we? Appl Microbiol Biotechnol 97:7999–8009

    Article  CAS  Google Scholar 

  86. Van Ginkel S, Logan BE (2005) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39:9351–9356

    Article  CAS  Google Scholar 

  87. Van Niel EWJ, Claassen PAM, Stams AJM (2003) Substrate and product inhibition of the hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81:255–262

    Article  CAS  Google Scholar 

  88. Schut GJ, Adams MWW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    Article  CAS  Google Scholar 

  89. Ciranna A, Larjo A, Kivistö A, Santala V, Roos C, Karp M (2013) Draft genome sequence of the hydrogen- and ethanol-producing anaerobic alkalithermophilic bacterium Caloramator celer. Genome Announc 1, e00471-13

    Article  Google Scholar 

  90. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297

    Article  CAS  Google Scholar 

  91. Venkata Mohan S (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrog Energy 34:7460–7474

    Article  CAS  Google Scholar 

  92. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626

    Article  CAS  Google Scholar 

  93. Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41:2118–2123

    Article  CAS  Google Scholar 

  94. Abo-Hashesh M, Ghosh D, Tourigny A, Taous A, Hallenbeck PC (2001) Single stage photofermentative hydrogen production from glucose: an attractive alternative to two stage photofermentationor co-culture approaches. Int J Hydrog Energy 36:13889–13895

    Article  CAS  Google Scholar 

  95. Oh Y-K, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102:8357–8367

    Article  CAS  Google Scholar 

  96. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative hydrogen production. Microb Cell Fact 11:115

    Article  CAS  Google Scholar 

  97. Van Niel EWJ, Willquist K, Zeidan AA, de Vrije T, Mars AE, Claassen PAM (2011) Hydrogen production by thermophilic fermentation. In: Azbar N, Levin D (eds) State of the art and progress in production of biohydrogen. Bentham Ebooks, Sharjah, pp 137–159

    Google Scholar 

  98. Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour Technol 101:7780–7788

    Article  CAS  Google Scholar 

  99. Willquist K, van Niel EWJ (2012) Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically-defined minimal media. Int J Hydrog Energy 37:4925–4929

    Article  CAS  Google Scholar 

  100. Pawar SS (2014) Caldicellulosiruptor saccharolyticus: an ideal hydrogen producer? PhD thesis, Lund University, Lund

    Google Scholar 

  101. Bielen AAM, Verhaart MRA, van der Oost J, Kengen SWM (2013) Biohydrogen production by the thermophilic bacterium Caldicellulosiruptor saccharolyticus: current status and perspectives. Life 3:52–85

    Article  CAS  Google Scholar 

  102. Cappelletti M, Zannoni D, Postec A, Ollivier B (2014) Members of the order Thermotogales: from microbiology to hydrogen production. In: Zannoni D, de Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38, Advances in photosynthesis and respiration. Springer, Dordrecht/Heidelberg/New York/London, pp 197–224

    Chapter  Google Scholar 

  103. Willquist K, Zeidan AA, van Niel EWJ (2010) Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus. Microb Cell Fact 10:11

    Google Scholar 

  104. Zurawski JV, Blumer-Schuette SE, Conway JM, Kelly RM (2014) The extremely thermophilic genus Caldicellulosiruptor: physiological and genomic characteristics for complex carbohydrate conversion to molecular hydrogen. In: Zannoni D, de Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38, Advances in photosynthesis and respiration. Springer, Dordrecht/Heidelberg/New York/London, pp 177–195

    Chapter  Google Scholar 

  105. Rydzak T, Grigoryan M, Cunningham ZJ, Krokhin OV, Ezzati P, Cicek N, Levin DB, Wilkins JA, Sparling R (2014) Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum. Appl Microbiol Biotechnol 98:6497–6510

    Article  CAS  Google Scholar 

  106. Ivanova G, Rákhely G, Kovács KL (2008) Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization. Int J Hydrog Energy 33:6953–6961

    Article  CAS  Google Scholar 

  107. Ljunggren M, Willquist K, Zacchi G, van Niel EWJ (2011) A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus. Biotechnol Biofuels 4:31

    Article  CAS  Google Scholar 

  108. Willquist K, van Niel EWJ (2010) Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP. Metab Eng 12:282–290

    Article  CAS  Google Scholar 

  109. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  CAS  Google Scholar 

  110. Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM (2013) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448

    Article  CAS  Google Scholar 

  111. Koskinen PEP, Lay C-H, Puhakka JA, Lin P-J, Wu S-Y, Örlyggson J, Lin C-Y (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnol Bioeng 33:1168–1178

    Google Scholar 

  112. Van Groenestijn JW, Geelhoed JS, Goorissen HP, Meesters KPM, Stams AJM, Claassen PAM (2009) Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer. Biotechnol Bioeng 102:1361–1367

    Article  CAS  Google Scholar 

  113. Peintner C, Zeidan AA, Schnitzhofer W (2010) Bioreactor systems for thermophilic fermentative hydrogen production: evaluation and comparison of appropriate systems. J Clean Prod 18:S15–S22

    Article  CAS  Google Scholar 

  114. Prasertsan P, O-Thong S, Birkeland N-K (2009) Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process. Int J Hydrog Energy 34:7448–7459

    Article  CAS  Google Scholar 

  115. Oh S-E, Iyer P, Bruns MA, Logan BE (2004) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87:119–127

    Article  CAS  Google Scholar 

  116. Ren N, Guo W, Liu B, Cao G, Ding J (2011) Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up productions. Curr Opin Biotechnol 22:365–370

    Article  CAS  Google Scholar 

  117. Ngo TA, Bui HTV (2013) Biohydrogen production using immobilized cells of hyperthermophilic Eubacterium Thermotoga neapolitana on porous glass beads. J Technol Innov Renew Energy 2:231–238

    CAS  Google Scholar 

  118. Liu Y, Yu P, Song X, Qu Y (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrog Energy 33:2927–2933

    Article  CAS  Google Scholar 

  119. Li Q, Liu C (2012) Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int J Hydrog Energy 37:10648–10654

    Article  CAS  Google Scholar 

  120. Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett 20:143–147

    Article  CAS  Google Scholar 

  121. Lu W, Wen J, Chen Y, Sun B, Jia X, Liu M, Caiyin Q (2007) Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. Int J Hydrog Energy 32:1059–1066

    Article  CAS  Google Scholar 

  122. Zeidan AA, Rådström P, van Niel EWJ (2010) Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing co-culture. Microb Cell Fact 9:102

    Article  CAS  Google Scholar 

  123. Pawar SS, Vongkompean T, Gray C, van Niel EWJ (2015) Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity. Biotechnol Biofuels 8:19

    Article  Google Scholar 

  124. Talluri S, Raj SM, Christopher LP (2013) Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour Technol 139:272–279

    Article  CAS  Google Scholar 

  125. Kataeva I, Foston MB, Yang S-J, Pattathil S, Biswal AK, Poole FL II, Basen M, Rhaesa AM, Thomas TP, Azadi P, Olman V, Saffold TD, Mohler KE, Lewis DL, Doeppke C, Zeng Y, Tschraplinkski TJ, York WS, Davis M, Mohnen D, Xu Y, Ragauskus AJ, Ding S-Y, Kelly RM, Hahn MG, Adams MWW (2013) Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 6:2186–2195

    Article  CAS  Google Scholar 

  126. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6:85

    Article  CAS  Google Scholar 

  127. Chittibabu G, Nath K, Das D (2006) Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem 41:682–688

    Article  CAS  Google Scholar 

  128. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    Article  CAS  Google Scholar 

  129. Taylor MP, van Zyl L, Tuffin IM, Leak DJ, Cowan DA (2011) Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysis. Microb Biotechnol 4:438–448

    Article  CAS  Google Scholar 

  130. Claassen PAM, de Vrije T, Koukios E, van Niel EWJ, Eroglu I, Modigell M, Friedl A, Wukovits W, Ahrer W (2010) Non-thermal production of pure hydrogen from biomass: HYVOLUTION. J Clean Prod 18:S4–S8

    Article  Google Scholar 

  131. Foglia D, Ljunggren M, Wukovits W, Friedl A, Zacchi G, Urbaniec K, Markowski M (2010) Integration studies on a two-stage fermentation process for the production of biohydrogen. J Clean Prod 18:S72–S80

    Article  CAS  Google Scholar 

  132. Modarresi A, Wukovits W, Foglia D, Friedl A (2010) Effect of process integration on the exergy balance of a two-stage process for fermentative hydrogen production. J Clean Prod 18:S63–S71

    Article  CAS  Google Scholar 

  133. Ochs D, Wukovits W, Ahrer W (2010) Life cycle inventory analysis of biological hydrogen production by thermophilic and photofermentation of potato steam peels (PSP). J Clean Prod 18:S88–S94

    Article  CAS  Google Scholar 

  134. Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  CAS  Google Scholar 

  135. Chen C-Y, Yang M-H, Yeh K-L, Liu C-H, Chang J-S (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrog Energy 33:4755–4762

    Article  CAS  Google Scholar 

  136. Redwood MD, Macaskie LE (2007) Method and apparatus for biohydrogen production. British patent application no. 0705583.3, UK

    Google Scholar 

  137. Androga DD, Özgür E, Eroglu I, Gündüz U, Yücel M (2012) Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based remova of ammonium ion. Int J Hydrog Energy 37:16421–16429

    Article  CAS  Google Scholar 

  138. Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210

    Article  CAS  Google Scholar 

  139. Liu BF, Ren NQ, Ding FXJ, Zheng GX, Guo WQ, Xu JF, Xie GJ (2009) Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria. Bioresour Technol 100:2719–2723

    Article  CAS  Google Scholar 

  140. Wang AJ, Sun D, Cao GL, Wang HY, Ren NQ, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143

    Article  CAS  Google Scholar 

  141. Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41:1413–1419

    Article  CAS  Google Scholar 

  142. Giordano A, Cantù C, Spagni A (2011) Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process. Bioresour Technol 102:4474–4479

    Article  CAS  Google Scholar 

  143. Pawar SS, Nkemka VN, Zeidan AA, Murto M, van Niel EWJ (2013) Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. Int J Hydrog Energy 38:9121–9130

    Article  CAS  Google Scholar 

  144. Kongjan P, O-Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035

    Article  CAS  Google Scholar 

  145. Van Haandel A, van der Lubbe J (2007) Handbook biological waste water treatment. IWA Publishing, London, pp 8–10

    Google Scholar 

  146. Willquist K, Nkemka V, Svensson H, Pawar SS, Ljunggren M, Hulteberg C, Murto M, van Niel EWJ, Karlsson H, Lidén G (2012) Design of a novel biohythane process with high H2 and CH4 production rates. Int J Hydrog Energy 37:17749–17762

    Article  CAS  Google Scholar 

  147. Siddiqui Z, Horan NJ, Salter M (2011) Energy optimisation from co-digested waste using a two-phase process to generate hydrogen and methane. Int J Hydrog Energy 36:4792–4799

    Article  CAS  Google Scholar 

  148. Yang ZM, Guo RB, Xu XH, Fan XL, Luo SJ (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrog Energy 36:3465–3470

    Article  CAS  Google Scholar 

  149. Lee Y, Chung J (2010) Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int J Hydrog Energy 35:11746–11755

    Article  CAS  Google Scholar 

  150. Kyazze G, Dinsdale R, Hawkes F, Guwy A, Premier G, Donnison I (2008) Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresour Technol 99:8833–8839

    Article  CAS  Google Scholar 

  151. McKinlay JB (2014) Systems biology of photobiological hydrogen production by purple non-sulfur bacteria. In: Zannoni D, de Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38, Advances in photosynthesis and respiration. Springer, Dordrecht/Heidelberg/New York/London, pp 155–176

    Chapter  Google Scholar 

  152. Munro SA, Zinder SH, Walker LP (2011) Comparative constraint-based model development for thermophilic hydrogen production. Ind Biotechnol 7:63–82

    Article  CAS  Google Scholar 

  153. Ljunggren M, Zacchi G (2009) Techno-economic evaluation of a two-step biological process for hydrogen production. Biotechnol Prog 26:496–504

    Google Scholar 

  154. Zannoni D, Antonioni G, Frascari D, de Philippis R (2014) Hydrogen production and possible impact on global energy demand: open problems and perspectives. In: Zannoni D, de Philippis R (eds) Microbial bioenergy: hydrogen production, vol 38, Advances in photosynthesis and respiration. Springer, Dordrecht/Heidelberg/New York/London, pp 349–356

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Swedish Energy Agency (Energimyndigheten; project number 31090-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed W. J. van Niel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Niel, E.W.J. (2016). Biological Processes for Hydrogen Production. In: Hatti-Kaul, R., Mamo, G., Mattiasson, B. (eds) Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 156. Springer, Cham. https://doi.org/10.1007/10_2016_11

Download citation

Publish with us

Policies and ethics