Skip to main content

The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses

  • Chapter
  • First Online:
Measurement, Monitoring, Modelling and Control of Bioprocesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. FDA (2004) Pharmaceutical cGMPs for the 21st century—A risk-based approach—final report

    Google Scholar 

  2. U.S. FDA (2006) Guidance for industry, Q8 pharmaceutical development

    Google Scholar 

  3. U.S. FDA (2004) Guidance for industry PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance

    Google Scholar 

  4. Baughmann E (2005) Process analytical chemistry: introduction and historical. In: Bakeev KA (ed) Process analytical technology: spectroscopic tools and implementation strategies for chemical and pharmaceutical industries. Blackwell, Oxford

    Google Scholar 

  5. von Stockar U, Maskow T, Liu J, Marison IW, Patiño R (2006) Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol 121:517–533

    Article  Google Scholar 

  6. Winkelmann M, Hüttl R, Wolf G (2004) Application of batch-calorimetry for the investigation of microbial activity. Thermochimica Acta 415:75–82

    Google Scholar 

  7. von Stockar U, Marison IW (1991) Large-scale calorimetry and biotechnology. Thermochimica Acta 193:215–242

    Google Scholar 

  8. Birou B, Marison IW, Stockar UV (1987) Calorimetric investigation of aerobic fermentations. Biotechnol Bioeng 30:650–660

    Article  CAS  Google Scholar 

  9. Buttiglieri G, Bouju H, Malpei F, Ficara E, Canziani R (2010) Microcalorimetry: a tool to investigate aerobic, anoxic and anaerobic autotrophic and heterotrophic biodegradation. Biochem Eng J 52:25–32

    Article  CAS  Google Scholar 

  10. Voisard D, von Stockar U, Marison IW (2002) Quantitative calorimetric investigation of fed-batch cultures of Bacillus sphaericus 1593 M. Thermochimica Acta 394:99–111

    Google Scholar 

  11. von Stockar U, Marison I (1989) The use of calorimetry in biotechnology, bioprocesses and engineering. Springer, Berlin/Heidelberg, 40:93–136

    Google Scholar 

  12. Redl B, Tiefenbrunner F (1981) Determination of hydrolytic activities in wastewater systems by microcalorimetry. Water Res 15:87–90

    Article  CAS  Google Scholar 

  13. Wadsö I (1986) Bio-calorimetry. Trends Biotechnol 4:45–51

    Article  Google Scholar 

  14. Grob B, Riesen R (1987) Reaction calorimetry for the development of chemical reactions. Thermochimica Acta 114:83–90

    Google Scholar 

  15. Marison IW, von Stockar U (1985) A novel bench-scale calorimeter for biological process development work. Thermochimica Acta 85:496

    Google Scholar 

  16. Marison I, Liu JS, Ampuero S, Von Stockar U, Schenker B (1998) Biological reaction calorimetry: development of high sensitivity bio-calorimeters. Thermochimica Acta 309:157–173

    Google Scholar 

  17. Zentgraf B (1991) Bench-scale calorimetry in biotechnology Thermochimica Acta 193:243–251

    Google Scholar 

  18. García-Payo MC, Ampuero S, Liu JS, Marison IW, von Stockar U (2002) The development and characterization of a high resolution bio-reaction calorimeter for weakly exothermic cultures. Thermochimica Acta 391:25–39

    Google Scholar 

  19. von Stockar U, Larsson C, Marison IW, Cooney MJ (1995) Calorimetry of dual limitations in yeast cultures. Thermochimica Acta 250:247–258

    Google Scholar 

  20. Aulenta F, Bassani C, Ligthart J, Majone M, Tilche A (2002) Calorimetry: a tool for assessing microbial activity under aerobic and anoxic conditions. Water Res 36:1297–1305

    Article  CAS  Google Scholar 

  21. Birou B (1986) Etude De La Chaleur Dégagée Par Des Cultures Microbiennes Dans Un Fermenteur De Laboratoire. E.P.F.L., Lausanne

    Google Scholar 

  22. Marison I, Linder M, Schenker B (1998) High-sensitive heat-flow calorimetry. Thermochimica Acta 310:43-46

    Google Scholar 

  23. Liu J, Marison IW, von Stockar U (2001) Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng 75:170–180

    Article  CAS  Google Scholar 

  24. Daverio E, Spanjers H, Bassani C, Ligthart J, Nieman H (2003) Calorimetric investigation of anaerobic digestion: biomass adaptation and temperature effect. Biotechnol Bioeng 82:499–505

    Article  CAS  Google Scholar 

  25. Janssen M, Patiño R, von Stockar U (2005) Application of bench-scale biocalorimetry to photoautotrophic cultures. Thermochimica Acta 435:18–27

    Google Scholar 

  26. Janssen M, Wijffels R, von Stockar U (2007) Biocalorimetric monitoring of photoautotrophic batch cultures. Thermochimica Acta 458:54–64

    Google Scholar 

  27. Randolph TW, Marison IW, Martens DE, VonStockar U (1990) Calorumetric control of fed-batch fermentations. Biotechnol Bioeng 36:678–684

    Article  CAS  Google Scholar 

  28. von Stockar U, Duboc P, Menoud L, Marison IW (1997) On-line calorimetry as a technique for process monitoring and control in biotechnology. Thermochimica Acta 300:225–236

    Google Scholar 

  29. Voisard D, Claivaz C, Menoud L, Marison IW, von Stockar U (1998) Use of reaction calorimetry to monitor and control microbial cultures producing industrially relevant secondary metabolites. Thermochimica Acta 309:87–96

    Google Scholar 

  30. Liu J, Marison I, von Stockar U (1999) Anaerobic calorimetry of the growth of Lactobacillus helveticus using a highly sensitive bio-RCl. Biochimica et Biophysica Acta 56:1191–1195

    Google Scholar 

  31. Patiño R, Janssen M, von Stockar U (2007) A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques. Biotechnol Bioeng 96:757–767

    Article  Google Scholar 

  32. Voisard D, Pugeaud P, Kumar AR, Jenny K, Jayaraman K, Marison IW, von Stockar U (2002) Development of a large-scale biocalorimeter to monitor and control bioprocesses. Biotechnol Bioeng 80:125–138

    Article  CAS  Google Scholar 

  33. Türker M (2004) Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations. Thermochimica Acta 419:73–81

    Google Scholar 

  34. Schubert T, Breuer U, Harms H, Maskow T (2007) Calorimetric bioprocess monitoring by small modifications to a standard bench-scale bioreactor. J Biotechnol 130:24–31

    Article  CAS  Google Scholar 

  35. Sivaprakasam S, Schuler M, Hama A, Hughes K, Marison I (2011) Biocalorimetry as a process analytical technology process analyser; robust in-line monitoring and control of aerobic fed-batch cultures of crabtree-negative yeast cells. J Therm Anal Calorim 104:75–85

    Google Scholar 

  36. Schuler M, Sivaprakasam S, Freeland B, Hama A, Hughes K, Marison I Investigation of the potential of biocalorimetry as a process analytical technology (PAT) tool for monitoring and control of Crabtree-negative yeast cultures. Appl Microbiol Biotechnol :1–10

    Google Scholar 

  37. Biener R, Steinkämper A, Hofmann J (2010) Calorimetric control for high cell density cultivation of a recombinant Escherichia coli strain. J Biotechnol 146:45–53

    Article  CAS  Google Scholar 

  38. Biener R, Steinkämper A, Horn T (2012) Calorimetric control of the specific growth rate during fed-batch cultures of Saccharomyces cerevisiae. J Biotechnol 160:195–201

    Article  CAS  Google Scholar 

  39. van Kleeff BHA, Kuenen JG, Honderd G, Heijnen JJ (1998) Using heat-flow measurements for the feed control of a fed batch fermentation of Saccharomyces cerevisiae. Thermochimica Acta 309:175–180

    Google Scholar 

  40. Kirkpatrick DS, McGinness JE, Moorhead WD, Corry PM, Proctor PH (1978) High-frequency dielectric spectroscopy of concentrated membrane suspensions. Biophys J 24:243–245

    Article  CAS  Google Scholar 

  41. Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B, Czermak P (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29:391–401

    Article  CAS  Google Scholar 

  42. FDA (2004) Guidance for industry PAT—a framework for innovative pharmaceutical development, Manufacturing and Quality Assurance

    Google Scholar 

  43. Soley A, Lecina M, Gamez X, Cairo JJ, Riu P, Rosell X, Bragos R, Godia F (2005) On-line monitoring of yeast cell growth by impedance spectroscopy. J Biotechnol 118:398–405

    Google Scholar 

  44. Nicholson DJ, Kell DB, Davey CL (1996) Deconvolution of the dielectric spectra of microbial cell suspensions using multivariate calibration and artificial neural networks. Bioelectrochem Bioenerget 39:185–193

    Article  CAS  Google Scholar 

  45. Davey HM, Davey CL, Woodward AM, Edmonds AN, Lee AW, Kell DB (1996) Oscillatory, stochastic and chaotic growth rate fluctuations in permittistatically controlled yeast cultures. BioSystems 39:43–61

    Article  CAS  Google Scholar 

  46. Claes JE, Van Impe JF (1999) On-line estimation of the specific growth rate based on viable biomass measurements: experimental validation. Bioprocess Biosystems Eng 21:389–395

    Google Scholar 

  47. Davey CL, Kell DB (1998) The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements: (II) Reduction in the contribution of electrode polarisation to dielectric spectra using a two-frequency method. Bioelectrochem Bioenerg 46:105–114

    Article  CAS  Google Scholar 

  48. Davey CL, Kell DB (1998) The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements—I. Quantifying the effects on electrode polarisation of factors likely to occur during fermentations. Bioelectrochem Bioenerg 46:91–103

    Article  CAS  Google Scholar 

  49. Davey CL (1993) The theory of the β-dielectric dispersion and its use in the estimation of cellular biomass. Aber instruments handbook pp. 38

    Google Scholar 

  50. Davey CL, Davey HM, Kell DB, Todd RW (1993) Introduction to the dielectric estimation of cellular biomass in real-time, with special emphasis on measurements at high-volume fractions. Anal Chim Acta 279:155–161

    Article  Google Scholar 

  51. Davey CL, GH Markx, Kell DB (1993) On the dielectric method of monitoring cellular viability. Pure Appl Chem 65:1921–1926

    Google Scholar 

  52. November EJ, Van Impe JF (2000) Evaluation of on-line viable biomass measurements during fermentations of Candida utilis. Bioprocess Biosystems Eng 23:473–477

    Google Scholar 

  53. Maskow T, Olomolaiye D, Breuer U, Kemp R (2004) Flow calorimetry and dielectric spectroscopy to control the bacterial conversion of toxic substrates into polyhydroxyalcanoates. Biotechnol Bioeng 85:547–552

    Article  CAS  Google Scholar 

  54. Neves AA, Pereira DA, Vieira LM, Menezes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52

    Article  CAS  Google Scholar 

  55. Ferreira AP, Vieira LM, Cardoso JP, Menezes JC (2005) Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J Biotechnol 116:403–409

    Article  Google Scholar 

  56. Clementschitsch F, Jürgen K, Florentina P, Karl B (2005) Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations. J Biotechnol 120:183–196

    Article  CAS  Google Scholar 

  57. Kaiser C, Pototzki T, Ellert A, Luttmann R (2008) Applications of PAT-process analytical technology in recombinant protein processes with Escherichia coli. Eng Life Sci 8:132–138

    Google Scholar 

  58. Maskow T, Röllich A, Fetzer I, Ackermann J, Harms H (2008) On-line monitoring of lipid storage in yeasts using impedance spectroscopy. J Biotechnol 135:64–70

    Article  CAS  Google Scholar 

  59. Maskow T, Röllich A, Fetzer I, Yao J, Harms H (2008) Observation of non-linear biomass–capacitance correlations: Reasons and implications for bioprocess control. Biosens Bioelectron 24:123–128

    Google Scholar 

  60. Patel PM, Bhat A, Markx GH (2008) A comparative study of cell death using electrical capacitance measurements and dielectrophoresis. Enzyme Microb Technol 43:523–530

    Article  CAS  Google Scholar 

  61. Xiong Z, Guo M, Guo Y, Chu J, Zhuang Y, Zhang S (2008) Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. J Biosci Bioeng 105:409–413

    Google Scholar 

  62. Dabros M, Dennewald D, Currie D, Lee M, Todd R, Marison I, von Stockar U (2009) Cole–cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass. Bioprocess Biosystems Eng 32:161–173

    Google Scholar 

  63. Dabros M, Amrhein M, Bonvin D, Marison IW, von Stockar U (2009) Data reconciliation of concentration estimates from mid-infrared and dielectric spectral measurements for improved on-line monitoring of bioprocesses. Biotechnol Prog 25:578–588

    Article  CAS  Google Scholar 

  64. Dabros M, Schuler M, Marison I (2010) Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass. Bioprocess Biosystems Eng 33:1109–1118

    Google Scholar 

  65. Tibayrenc P, Preziosi-Belloy L, Ghommidh C (2011) On-line monitoring of dielectrical properties of yeast cells during a stress-model alcoholic fermentation. Process Biochem 46:193–201

    Google Scholar 

  66. Markx GH, Davey CL, Kell DB (1991) To what extent is the magnitude of the Cole–Cole-alpha of the beta-dielectric dispersion of cell-suspensions explicable in terms of the cell-size distribution. Bioelectrochem Bioenerg 25:195–211

    Article  Google Scholar 

  67. Guan Y, Evans PM, Kemp RB (1998) Specific heat flow rate: an on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol Bioeng 58:464–477

    Article  CAS  Google Scholar 

  68. Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63:187–198

    Article  CAS  Google Scholar 

  69. Ducommun P, Kadouri A, von Stockar U, Marison IW (2002) On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng 77:316–323

    Article  CAS  Google Scholar 

  70. Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, von Stockar U, Marison IW (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72:515–522

    Article  CAS  Google Scholar 

  71. Cannizzaro C, Gugerli R, Marison I, von Stockar U (2003) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84:597–610

    Article  CAS  Google Scholar 

  72. Negrete A, Esteban G, Kotin R (2007) Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Appl Microbiol Biotechnol 76:761–772

    Article  CAS  Google Scholar 

  73. Ansorge S, Esteban G, Schmid G (2007) On-line monitoring of infected Sf-9 insect cell cultures by scanning permittivity measurements and comparison with off-line biovolume measurements. Cytotechnology 55:115–124

    Article  Google Scholar 

  74. Bonincontro A, Risuleo G (2003) Dielectric spectroscopy as a probe for the investigation of conformational properties of proteins. Spectrochim Acta A 59:2677–2684

    Google Scholar 

  75. Castro-Giráldez M, Fito PJ, Rosa MD, Fito P (2011) Application of microwaves dielectric spectroscopy for controlling osmotic dehydration of kiwifruit (Actinidia deliciosa cv Hayward). Innovative Food Sci Emer Tech 12:623–627

    Google Scholar 

  76. Pohl HA, Kaler K, Pollock K (1981) The continuous positive and negative dielectrophoresis of microorganisms. J Biol Phys 9:67–86

    Article  Google Scholar 

  77. Kim T, Kang J, Lee J, Yoon J (2011) Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Res 45:4615–4622

    Article  CAS  Google Scholar 

  78. Davey CL, Markx GH, Kell DB (1993) On the dielectric method of monitoring cellular viability. Pure Appl Chem 65:1921–1926

    Article  CAS  Google Scholar 

  79. Gastrock G, Lemke K, Metze J (2001) Sampling and monitoring in bioprocessing using microtechniques. Rev Mol Biotechnol 82:123–135

    Google Scholar 

  80. Krommenhoek EE, Gardeniers JGE, Bomer JG, Van den Berg A, Li X, Ottens M, van der Wielen LAM, van Dedem GWK, Van Leeuwen M, van Gulik WM, Heijnen JJ (2006) Monitoring of yeast cell concentration using a micromachined impedance sensor. Sensor Actuat B-Chem 115:384–389

    Google Scholar 

  81. Ciureanu M, Levadoux W, Goldstein S (1997) Electrical impedance studies on a culture of a newly discovered strain of streptomyces. Enzyme Microb Technol 21:441–449

    Article  CAS  Google Scholar 

  82. Asami K, Yonezawa T (1996) Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys J 71:2192–2200

    Article  CAS  Google Scholar 

  83. Ducommun P, Ruffieux P, Furter M, Marison I, von Stockar U (2000) A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. J Biotechnol 78:139–147

    Article  CAS  Google Scholar 

  84. Ansorge S, Lanthier S, Transfiguracion J, Henry O, Kamen A (2011) Monitoring lentiviral vector production kinetics using online permittivity measurements. Biochem Eng J 54:16–25

    Article  CAS  Google Scholar 

  85. Maskow T, Kiesel B, Schubert T, Yong Z, Harms H, Yao J (2010) Calorimetric real time monitoring of lambda prophage induction. J Virol Methods 168:126–132

    Article  CAS  Google Scholar 

  86. Markx GH, Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microb Technol 25:161–171

    Article  CAS  Google Scholar 

  87. Asami K (2002) Characterization of biological cells by dielectric spectroscopy. J Non-Cryst Solids 305:268–277

    Article  CAS  Google Scholar 

  88. Carvell J, Poppleton J, Dowd J (2006) Measurements and control of viable cell density in cGMP manufacturing processes. Bioprocess J 5:58–63

    Google Scholar 

  89. Kiviharju K, Salonen K, Moilanen U, Eerikäinen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. Ind Microbiol Biotechnol 35:657–665

    Google Scholar 

  90. Krairak S, Yamamura K, Nakajima M, Shimizu H, Shioya S (1999) On-line monitoring of fungal cell concentration by dielectric spectroscopy. J Biotechnol 69:115–123

    Article  CAS  Google Scholar 

  91. Roche Diagnostics GmbH (2009) The xCELLigence system—new horizons in cellular technology.http://www.roche-applied-science.com/sis/xcelligence/xce_docs/xCELL-SystBrosch_NL2_LR.pdf

  92. Asami K, Gheorghiu E, Yonezawa T (1999) Real-time monitoring of yeast cell division by dielectric spectroscopy. Biophys J 76:3345–3348

    Article  CAS  Google Scholar 

  93. Hofmann MC, Ellersiek D, Kensy F, Büchs J, Mokwa W, Schnakenberg U (2005) Galvanic decoupled sensor for monitoring biomass concentration during fermentation processes. Sensors Actuators B Chem 111–112:370–375

    Article  Google Scholar 

  94. Hofmann MC, Kensy F, Buechs J, Mokwa W, Schnakenberg U (2005) Transponder-based sensor for monitoring electrical properties of biological cell solutions. J Biosci Bioeng 100:172–177

    Google Scholar 

  95. Kim Y, Park J, Jung H (2009) An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sensors Actuators B Chem 138:270–277

    Article  Google Scholar 

  96. Hofmann MC, Funke M, Buechs J, Mokwa W, Schnakenberg U (2010) Development of a four electrode sensor array for impedance spectroscopy in high content screenings of fermentation processes. Sensors Actuators B Chem 147:93–99

    Article  Google Scholar 

  97. Carvell, J. and K. Turner (2003) New applications and methods utilizing radio-frequency impedance measurements for improving yeast management. Master Brewers Assoc Am 40:30–38

    Google Scholar 

  98. Vojinovic V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring. Part I In Situ Sens 114:1083–1091

    Google Scholar 

  99. O’Reilly BT, Hilton MD (2006) Improved fed-batch through maintenance of specific productivity by indexing the glucose feed rate to capacitance-measured biomass in Pichia pastoris, BIOT 443: Upstream Processing: microbial fermentation process development. Advances in Process Engineering, San Francisco

    Google Scholar 

  100. Carvell J, Dowd J (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50:35–48

    Article  CAS  Google Scholar 

  101. Günzler H, Gremlich H (2002) Spectroscopy in near- and far-infrared as well as related methods. In: Anonymous IR spectroscopy: an introduction. Wilcy-VCH, Weinheim, p 309

    Google Scholar 

  102. Brown JM (1998) Molecular spectroscopy. Oxford University Press, New York

    Google Scholar 

  103. Schenk J, Dabros M, Marison IW, von Stockar U (2005) Simple and quick in situ calibration of a FTIR instrument to control fed-batch fermentations of Pichia pastoris. J Biotechnol 118:S37–S37

    Google Scholar 

  104. Schenk J, Marison IW, von Stockar U (2007) Simplified Fourier-transform mid-infrared spectroscopy calibration based on a spectra library for the on-line monitoring of bioprocesses. Analytica Chimica Acta 591:132–140

    Google Scholar 

  105. Schenk J, Viscasillas C, Marison IW, von Stockar U (2008) On-line monitoring of nine different batch cultures of E. coli by mid-infrared spectroscopy, using a single spectra library for calibration. J Biotechnol 134:93–102

    Article  CAS  Google Scholar 

  106. Gabriele R (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57:1109–1143

    Article  Google Scholar 

  107. Simpson MB (2005) Near-infrared spectroscopy for process analytical chemistry: theory, technology and implementation. In: Bakeev KA (ed) Process analytical technology: spectroscopic tools and implementation for the chemical and pharmaceutical industries. Blackwell, Oxford, p 39

    Google Scholar 

  108. Singh R (2002) C. V. Raman and the discovery of the Raman effect. Phys Perspect 4:399–420

    Google Scholar 

  109. Das RS, Agrawal YK Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc 57:163–176

    Google Scholar 

  110. Wartewig S, Nuebert RHH (2005) Pharmaceutical applications of mid-IR and Raman spectroscopy. Adv Drug Deliver Rev 57:1144–1170

    Google Scholar 

  111. Chase B (1994) A new generation of Raman instrumentation. Appl Spectrosc 48:14A–19A

    Article  CAS  Google Scholar 

  112. Massart DL, Vandeginste BGM, Deming BM, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. data handling in science and technology. Elsevier, Amsterdam

    Google Scholar 

  113. Brown, S. D., (2001) A Short Primer on Chemometrics for Spectroscopists. Educational Article. http://www.spectroscopynow.com/details/education/sepspec10349education/A-Short-Primer-on-Chemometrics-for-Spectroscopists.html. Accessed 16 Nov 2012

  114. Kramer R (1998) Chemometric techniques for quantitative analysis. Dekker, New York, pp 216

    Google Scholar 

  115. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777

    Article  CAS  Google Scholar 

  116. Naes T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR, Chichester, pp 344

    Google Scholar 

  117. Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J (2006) OPLS methodology for analysis of pre-processing effects on spectroscopic data. Chemom Intellig Lab Syst 84:153–158

    Article  CAS  Google Scholar 

  118. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Google Scholar 

  119. Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221

    Article  CAS  Google Scholar 

  120. Henriques J, Buziol S, Stocker E, Voogd A, Menezes J (2010) Monitoring mammalian cell cultivations for monoclonal antibody production using near-infrared spectroscopy. Adv Biochem Eng Biotechnol 116:73–97

    Google Scholar 

  121. Landgrebe D, Haake C, Höpfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon K (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biot 88:11–22

    Google Scholar 

  122. ASTM International (2012) Standard Practices for Infrared Multivariate Quantitative Analysis, ASTM Standard 1655–05. doi:10.1520/E1655-05R12, West Conshohocken, PA

  123. Brereton RG (1997) Multilevel multifactor designs for multivariate analysis. Analyst 122:1521–1529

    Google Scholar 

  124. Petiot E, Bernard-Moulin P, Magadoux T, Gény C, Pinton H, Marc A (2010) In situ quantification of microcarrier animal cell cultures using near-infrared spectroscopy. Process Biochem 45:1427–1431

    Google Scholar 

  125. Rhiel MH, Amrhein M, Marison IW, von Stockar U (2002) The influence of correlated calibration samples on the prediction performance of multivariate models based on mid- infrared spectra of animal cell cultures. Anal Chem 74:5227–5236

    Article  CAS  Google Scholar 

  126. Petersen N, Ödman P, Padrell AEC, Stocks S, Lantz AE, Gernaey KV (2010) In situ near infrared spectroscopy for analyte-specific monitoring of glucose and ammonium in streptomyces coelicolor fermentations. Biotechnol Prog 26:263–271

    CAS  Google Scholar 

  127. Brereton RG (2007) Applied chemometrics for scientists. Wiley, Chichester

    Book  Google Scholar 

  128. Munoz JA, Brereton RG (1998) Partial factorial designs for multivariate calibration: extension to seven levels and comparison of strategy. Chemometrics Intell Lab Syst 43:89–105

    Article  Google Scholar 

  129. Rhiel M, Ducommun P, Bolzonella I, Marison I, von Stockar U (2002) Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements. Biotechnol Bioeng 77:174–185

    Article  CAS  Google Scholar 

  130. Doak DL, Phillips JA (1999) In situ monitoring of an Escherichia coli fermentation using a diamond composition ATR probe and mid-infrared spectroscopy. Biotechnol Prog 15:529–539

    Article  CAS  Google Scholar 

  131. Franco VG, Perín JC, Mantovani VE, Goicoechea HC (2006) Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection. Talanta 68:1005–1012

    Article  CAS  Google Scholar 

  132. Mazarevica G, Diewok J, Baena JR, Rosenberg E, Lendl B (2004) On-line fermentation monitoring by mid-infrared spectroscopy. Appl Spectrosc 58:804–810

    Article  CAS  Google Scholar 

  133. Roychoudhury P, Harvey LM, McNeil B (2006) At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy. Analytica Chimica Acta 561:218–224

    Google Scholar 

  134. Dabros M, Amrhein M, Bonvin D, Marison IW, von Stockar U (2007) Data reconciliation of mid-infrared and dielectric spectral measurements for improved on-line monitoring of bioprocesses. Biotechnol Prog 25(2):578–588

    Google Scholar 

  135. Fayolle P, Picque D, Corrieu G (2000) On-line monitoring of fermentation processes by a new remote dispersive middle-infrared spectrometer. Food Control 11:291–296

    Google Scholar 

  136. Kornmann H, Valentinotti S, Duboc P, Marison I, von Stockar U (2004) Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy. J Biotechnol 113:231–245

    Article  CAS  Google Scholar 

  137. Schenk J, Marison IW, von Stockar U (2007) A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. J Biotechnol 128:344–353

    Google Scholar 

  138. Cervera AE, Petersen N, Lantz AE, Larsen A, Gernaey KV (2009) Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnol Progr 25:1561–1581

    Google Scholar 

  139. Crowley J, Arnold SA, Wood N, Harvey LM, McNeil B (2005) Monitoring a high cell density recombinant Pichia pastoris fed-batch bioprocess using transmission and reflectance near infrared spectroscopy. Enzyme Microb Tech 36:621–628

    Google Scholar 

  140. Rodrigues L, Vieira L, Cardoso J, Menezes J (2008) The use of NIR as a multi-parametric in situ monitoring technique in filamentous fermentation systems. Talanta 75:1356

    Google Scholar 

  141. Arnold SA, Crowley J, Woods N, Harvey LM, McNeill B (2003) In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol Bioeng 84:13–19

    Article  CAS  Google Scholar 

  142. Roychoudhury P, O’Kennedy R, McNeil B, Harvey LM (2007) Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta 590:110–117

    Article  CAS  Google Scholar 

  143. Vaccari G, Dosi E, Campi AL, Mantovani G, Gonzalez-Vara y RA, Matteuzzi D (1994) A near-infrarod spectroscopy technique for the control of fermentation processes: an application to lactic acid fermentation. Biotechnol Bioeng 43:913–917

    Google Scholar 

  144. González-Vara y RA, Vaccari G, Dosi E, Trilli A, Rossi M, Matteuzzi D (2000) Enhanced production of L-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR. Biotechnol Bioeng 67:147–156

    Google Scholar 

  145. Cimander C, Mandenius C (2002) Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling. J Chem Technol Biotechnol 77:1157–1168

    Article  CAS  Google Scholar 

  146. Gomy C, Jouan M, Dao NQ (1988) Methode d’analyse quantitative par spectrometrie Raman-laser associee aux fibres optiques pour le suivi d’une fermentation alcoolique. Anal Chim Acta 215:211–221

    Article  CAS  Google Scholar 

  147. Shaw AD, Kaderbhai N, Jones A, Woodward AM, Goodacre R, Rowland JJ, Kell DB (1999) Noninvasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics. Appl Spectrosc 53:1419–1428

    Google Scholar 

  148. Cannizzaro C, Rhiel M, Marison I, von Stockar U (2003) On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng 83:668–680

    Article  CAS  Google Scholar 

  149. Lee HLT, Boccazzi P, Gorret N, Ram RJ, Sinskey AJ (2004) In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vib Spectrosc 35:131–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Marison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marison, I., Hennessy, S., Foley, R., Schuler, M., Sivaprakasam, S., Freeland, B. (2012). The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses. In: Mandenius, CF., Titchener-Hooker, N. (eds) Measurement, Monitoring, Modelling and Control of Bioprocesses. Advances in Biochemical Engineering/Biotechnology, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_175

Download citation

Publish with us

Policies and ethics