Skip to main content

Potential for Osteogenic and Chondrogenic Differentiation of MSC

  • Chapter
  • First Online:
Mesenchymal Stem Cells - Basics and Clinical Application I

Abstract

The introduction of mesenchymal stem cells (MSC) into the field of tissue engineering for bone and cartilage repair is a promising development, since these cells can be expanded ex vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into different cell lineages. Mesenchymal stem cells isolated from various tissues have been intensively studied and characterized by many research groups. To obtain functionally active differentiated tissue, tissue engineered constructs are cultivated in vitro statically or dynamically in bioreactors under controlled conditions. These conditions include special cell culture media, addition of signalling molecules, various physical and chemical factors and the application of different mechanical stimuli. Oxygen concentration in the culture environment is also a significant factor which influences MSC proliferation, stemness and differentiation capacity. Knowledge of the different aspects which affect MSC differentiation in vivo and in vitro will help researchers to achieve directed cell fate without the addition of differentiation agents in concentrations above the physiological range.

Graphical Abstract

Antonina Lavrentieva and Tim Hatlapatka contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

AD:

Adipose-derived

b-FGF:

Basic fibroblast growth factor

BM:

Bone marrow

BMPs:

Bone morphogenic proteins

ESC:

Embryonic stem cell

GAG:

Glycosaminoglycan

GvHD:

Graft-versus-host disease

h:

Human

HA:

Hyaluronic acid

HLA:

Human leukocyte antigen

HUCPVC:

Human umbilical cord perivascular cells

ISCT:

International Society for Cellular Therapy

LIPUS:

Low-intensity pulsed ultrasound

LLLI:

Low-level light irradiation

MAPK:

Mitogen-activated protein kinases

MMPs:

Matrix metalloproteases

MSC:

Mesenchymal stromal cell

PBL:

Peripheral blood lymphocytes

PG:

Proteoglycan

PLGA:

Poly(L-lactide-co-glycolide)

PFF:

Pulsating fluid flow

r:

Rabbit

TGF-β:

Transforming growth factor-beta

TE:

Tissue engineering

UC:

Umbilical cord

UCB:

Umbilical cord blood

WJ:

Wharton’s jelly

3D:

Three-dimensional

References

  1. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  Google Scholar 

  2. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  Google Scholar 

  3. Majore I et al (2009) Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal 7:6

    Article  Google Scholar 

  4. Hatlapatka T et al (2011) Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng Part C Methods 17(4):485–493

    Article  Google Scholar 

  5. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5(1):32–45

    Article  CAS  Google Scholar 

  6. Baglioni S et al (2009) Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J 23(10):3494–3505

    Article  CAS  Google Scholar 

  7. Alsalameh S et al (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50(5):1522–1532

    Article  Google Scholar 

  8. Huang AH et al (2009) Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod 35(5):673–681

    Article  Google Scholar 

  9. Patki S et al (2010) Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell 23(2):35–40

    Google Scholar 

  10. Zvaifler NJ et al (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2(6):477–488

    Article  CAS  Google Scholar 

  11. Gang EJ et al (2004) In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 321(1):102–108

    Article  CAS  Google Scholar 

  12. Tang XP et al (2006) Differentiation of human umbilical cord blood stem cells into hepatocytes in vivo and in vitro. World J Gastroenterol 12(25):4014–4019

    CAS  Google Scholar 

  13. Jazedje T et al (2009) Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro. J Transl Med 7:6

    Article  Google Scholar 

  14. Berger MJ et al (2006) Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells. Cytotherapy 8(5):480–487

    Article  CAS  Google Scholar 

  15. Zhang Y et al (2008) Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180(5):2226–2233

    Article  CAS  Google Scholar 

  16. Witkowska-Zimny M, Wrobel E (2011) Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett 16(3):493-514

    Google Scholar 

  17. Moretti P et al (2010) Mesenchymal stromal cells derived from human umbilical cord tissues: Primitive cells with potential for clinical and tissue engineering applications. Adv Biochem Eng Biotechnol 123:29–54

    CAS  Google Scholar 

  18. Majore I et al (2011) Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev 7(1):17–31

    Article  Google Scholar 

  19. Jaiswal N et al (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64(2):295–312

    Article  CAS  Google Scholar 

  20. Oshina H et al (2007) Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone 41(4):575–583

    Article  CAS  Google Scholar 

  21. Schwarz RI, Kleinman P, Owens N (1987) Ascorbate can act as an inducer of the collagen pathway because most steps are tightly coupled. Ann N Y Acad Sci 498:172–185

    Article  CAS  Google Scholar 

  22. Edgar CM et al (2007) Autogenous regulation of a network of bone morphogenetic proteins (BMPs) mediates the osteogenic differentiation in murine marrow stromal cells. Bone 40(5):1389–1398

    Article  CAS  Google Scholar 

  23. Bi LX, Simmons DJ, Mainous E (1999) Expression of BMP-2 by rat bone marrow stromal cells in culture. Calcif Tissue Int 64(1):63–68

    Article  CAS  Google Scholar 

  24. Song I et al (2011) Effects of BMP-2 and vitamin D3 on the osteogenic differentiation of adipose stem cells. Biochem Biophys Res Commun 408(1):126–131

    Google Scholar 

  25. Hildebrandt C, Buth H, Thielecke H (2009) Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells. Ann Anat 191(1):23–32

    Article  Google Scholar 

  26. Yoo JU et al (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80(12):1745–1757

    CAS  Google Scholar 

  27. Mackay AM et al (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415–428

    Article  CAS  Google Scholar 

  28. Johnstone B et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272

    Article  CAS  Google Scholar 

  29. Bian L et al (2011) Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32(27):6425–6434

    Article  CAS  Google Scholar 

  30. Hellingman CA et al (2011) Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification. Tissue Eng Part A 17(7–8):1157–1167

    Article  CAS  Google Scholar 

  31. Hatakeyama Y et al (2003) Smad signaling in mesenchymal and chondroprogenitor cells.J Bone Joint Surg Am 85-A Suppl 3:8–13

    Google Scholar 

  32. Lee JW et al (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 45(Suppl):41–47

    Google Scholar 

  33. Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54(4):1222–1232

    Article  CAS  Google Scholar 

  34. Guilak F et al (2010) Nicolas Andry award: Multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering. Clin Orthop Relat Res 468(9):2530–2540

    Article  Google Scholar 

  35. Estes BT et al (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5(7):1294–1311

    Google Scholar 

  36. Scharstuhl A et al (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25(12):3244–3251

    Article  CAS  Google Scholar 

  37. Payne KA, Didiano DM, Chu CR (2010) Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthr Cartil 18(5):705–713

    Google Scholar 

  38. Im GI, Shin YW, Lee KB (2005) Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 13(10):845–853

    Article  Google Scholar 

  39. Afizah H et al (2007) A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 13(4):659–666

    Article  CAS  Google Scholar 

  40. Jakobsen RB et al (2010) Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue. Knee Surg Sports Traumatol Arthrosc 18(10):1407–1416

    Google Scholar 

  41. Kim HJ, Im GI (2009) Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: Greater doses of growth factor are necessary. J Orthop Res 27(5):612–619

    Article  Google Scholar 

  42. Kern S et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  CAS  Google Scholar 

  43. Wang L et al (2009) A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A 15(8):2259–2266

    Article  CAS  Google Scholar 

  44. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392

    Article  CAS  Google Scholar 

  45. Hildner F et al (2010) How chondrogenic are human umbilical cord matrix cells? A comparison to adipose-derived stem cells. J Tissue Eng Regen Med 4(3):242–245

    Google Scholar 

  46. Hattori H et al (2004) Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 178(1):2–12

    Article  Google Scholar 

  47. Rebelatto CK et al (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 233(7):901–913

    Article  CAS  Google Scholar 

  48. Lafont JE (2010) Lack of oxygen in articular cartilage: Consequences for chondrocyte biology. Int J Exp Pathol 91(2):99–106

    Google Scholar 

  49. Kofoed H et al (1985) Bone marrow circulation after osteotomy. Blood flow, pO2, pCO2, and pressure studied in dogs. Acta Orthop Scand 56(5):400–403

    Article  CAS  Google Scholar 

  50. Grant JL, Smith B (1963) Bone marrow gas tensions, bone marrow blood flow, and erythropoiesis in man. Ann Intern Med 58:801–809

    Article  CAS  Google Scholar 

  51. Bizzarri A et al (2006) Continuous oxygen monitoring in subcutaneous adipose tissue using microdialysis. Anal Chim Acta 573–574:48–56

    Article  Google Scholar 

  52. Ivanovic Z (2009) Hypoxia or in situ normoxia: The stem cell paradigm. J Cell Physiol 219(2):271–275

    Article  CAS  Google Scholar 

  53. Lavrentieva A et al (2010) Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal 8:18

    Article  Google Scholar 

  54. Huang J et al (2011) Hypoxia induces osteogenesis-related activities and expression of core binding factor α1 in mesenchymal stem cells. Tohoku J Exp Med. 224(1):7–12

    Google Scholar 

  55. Potier E et al (2007) Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 40(4):1078–1087

    Article  CAS  Google Scholar 

  56. Yang DC et al (2011) Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 6(9):e23965

    Google Scholar 

  57. Holzwarth C et al (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11

    Google Scholar 

  58. Grayson WL et al (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207(2):331–339

    Article  CAS  Google Scholar 

  59. Nekanti U et al (2010) Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 6(5):499–512

    Google Scholar 

  60. Malladi P et al (2006) Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 290(4):C1139–C1146

    Article  CAS  Google Scholar 

  61. D’Ippolito G et al (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39(3):513–522

    Article  Google Scholar 

  62. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187(3):345–355

    Article  CAS  Google Scholar 

  63. Wang DW et al (2005) Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 204(1):184–191

    Article  CAS  Google Scholar 

  64. Merceron C et al (2010) Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol 298(2):C355–365

    Google Scholar 

  65. Hirao M et al (2006) Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 281(41):31079–31092

    Article  CAS  Google Scholar 

  66. Scherer K et al (2004) The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41(3–4):323–333

    CAS  Google Scholar 

  67. Krinner A et al (2009) Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation. Cell Prolif 42(4):471–484

    Article  CAS  Google Scholar 

  68. Robins JC et al (2005) Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37(3):313–322

    Article  CAS  Google Scholar 

  69. Sheehy EJ, Buckley CT, Kelly DJ (2012) Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochem Biophys Res Commun 417(1):305–310

    Google Scholar 

  70. Meyer EG et al (2010) Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J Biomech 43(13):2523–2516

    Google Scholar 

  71. Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  72. Reich KM, Gay CV, Frangos JA (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol 143(1):100–104

    Article  CAS  Google Scholar 

  73. Dillaman RM, Roer RD, Gay DM (1991) Fluid movement in bone: theoretical and empirical. J Biomech 24(Suppl 1):163–177

    Article  Google Scholar 

  74. Hall AC, Urban JP, Gehl KA (1991) The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 9(1):1–10

    Article  CAS  Google Scholar 

  75. Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res 17(2):200–204

    Article  CAS  Google Scholar 

  76. Lee DA et al (2011) Stem cell mechanobiology. J Cell Biochem 112(1):1–9

    Article  CAS  Google Scholar 

  77. Liu L, Yuan W, Wang J (2010) Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol 9(6):659–670

    Article  Google Scholar 

  78. Li YJ et al (2004) Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 22(6):1283–1289

    Article  CAS  Google Scholar 

  79. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36(6):1047–1055

    Article  CAS  Google Scholar 

  80. Kraft DC et al (2011) Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy 13(2):214–226

    Article  CAS  Google Scholar 

  81. Knippenberg M et al (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 11(11–12):1780–1788

    Article  CAS  Google Scholar 

  82. Glossop JR, Cartmell SH (2009) Effect of fluid flow-induced shear stress on human mesenchymal stem cells: Differential gene expression of IL1B and MAP3K8 in MAPK signaling. Gene Expr Patterns 9(5):381–388

    Article  CAS  Google Scholar 

  83. Bjerre L et al (2008) Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials 29(17):2616–2627

    Article  CAS  Google Scholar 

  84. Yu X et al (2004) Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci USA 101(31):11203–11208

    Article  CAS  Google Scholar 

  85. Suck K et al (2010) A rotating bed system bioreactor enables cultivation of primary osteoblasts on well-characterized Sponceram regarding structural and flow properties. Biotechnol Prog 26(3):671–678

    Article  CAS  Google Scholar 

  86. Kasper C, Suck K, Anton F, Scheper T, Kall S, van Griensven M (2007) A newly developed rotating bed bioreactor for bone tissue engineering. In: Ashammakhi N, Reis R, Chiellini E (eds) Topics in tissue engineering. Vol.3

    Google Scholar 

  87. Jagodzinski M et al (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41, discussion 41

    Google Scholar 

  88. Haasper C et al (2008) Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol 59(6):355–363

    Article  CAS  Google Scholar 

  89. Yoshikawa T et al (1997) Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation. Biomed Mater Eng 7(6):369–377

    CAS  Google Scholar 

  90. Wozniak M et al (2000) Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression. J Bone Miner Res 15(9):1731–1745

    Article  CAS  Google Scholar 

  91. van Griensven M, Diederichs S, Kasper C (2006) Mechanical strain of bone marrow stromal cells induces proliferation and differentiation into osteoblast-like cells. In: Ashammakhi N, Reis RL (eds) Topics in tissue engineering, vol 2

    Google Scholar 

  92. Diederichs S et al (2010) Application of different strain regimes in two-dimensional and three-dimensional adipose tissue-derived stem cell cultures induces osteogenesis: Implications for bone tissue engineering. J Biomed Mater Res A 94(3):927–936

    Google Scholar 

  93. Davisson T et al (2002) Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 20(4):842–848

    Article  CAS  Google Scholar 

  94. Sah RL et al (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7(5):619–636

    Article  CAS  Google Scholar 

  95. Demarteau O et al (2003) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310(2):580–588

    Article  CAS  Google Scholar 

  96. Parkkinen JJ et al (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 10(5):610–620

    Article  CAS  Google Scholar 

  97. Kisiday JD et al (2009) Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng Part A 15(10):2817–2824

    Article  CAS  Google Scholar 

  98. Haudenschild AK et al (2009) Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann Biomed Eng 37(3):492–502

    Article  Google Scholar 

  99. Li Z et al (2010) Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J Cell Mol Med 14(6A):1338–1346

    Google Scholar 

  100. Wagner DR et al (2008) Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng 36(5):813–820

    Article  Google Scholar 

  101. Thorpe SD et al (2010) The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 38(9):2896–2909

    Article  Google Scholar 

  102. Yu HS et al (1996) Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 107(4):593–596

    Article  CAS  Google Scholar 

  103. Funk JO et al (1993) Helium-neon laser irradiation induces effects on cytokine production at the protein and the mRNA level. Exp Dermatol 2(2):75–83

    Article  CAS  Google Scholar 

  104. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17

    Article  CAS  Google Scholar 

  105. Mvula B et al (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282

    Article  CAS  Google Scholar 

  106. Eduardo FP et al (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438

    Article  Google Scholar 

  107. Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(Suppl 1):S157–S165

    CAS  Google Scholar 

  108. Wu YH et al (2012) Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27(2):509–519

    Google Scholar 

  109. Corradi C, Cozzolino A (1953) Effect of ultrasonics on the development of osseous callus in fractures. Arch Ortop 66(1):77–98

    CAS  Google Scholar 

  110. Rubin C et al (2001) The use of low-intensity ultrasound to accelerate the healing of fractures.J Bone Joint Surg Am 83-A(2):259–270

    Google Scholar 

  111. Angle SR et al (2011) Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics 51(3):281–288

    Article  CAS  Google Scholar 

  112. Gao H, Ayyaswamy PS, Ducheyne P (1997) Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Microgravity Sci Technol 10(3):154–165

    CAS  Google Scholar 

  113. Prostiakov IV, Morukov BV, Morukov IB (2010) Dynamics of changes in bone mineral density and structural organization in cosmonauts following space flight of 6 months in duration. Aviakosm Ekolog Med 44(3):24–28

    CAS  Google Scholar 

  114. Oganov VS et al (1992) Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station. Aviakosm Ekolog Med 26(5–6):20–24

    CAS  Google Scholar 

  115. Zayzafoon M, Meyers VE, McDonald JM (2005) Microgravity: The immune response and bone. Immunol Rev 208:267–280

    Article  CAS  Google Scholar 

  116. Sheyn D et al (2010) The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study. Tissue Eng Part A 16(11):3403–3412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Lavrentieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lavrentieva, A., Hatlapatka, T., Neumann, A., Weyand, B., Kasper, C. (2012). Potential for Osteogenic and Chondrogenic Differentiation of MSC. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application I. Advances in Biochemical Engineering/Biotechnology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_133

Download citation

Publish with us

Policies and ethics