Skip to main content

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahlijanian, M.K., R.E. Westenbroek, and W.A. Catterall. 1990. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 4:819–832.

    Article  Google Scholar 

  • Aiello, E.A., and H.E. Cingolani. 2001. Angiotensin II stimulates cardiac L-type Ca(2+) current by a Ca(2+)- and protein kinase C-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 280:H1528–H1536.

    Google Scholar 

  • Alden, K.J., P.H. Goldspink, S.W. Ruch, P.M. Buttrick, and J. Garcia. 2002. Enhancement of L-type Ca(2+) current from neonatal mouse ventricular myocytes by constitutively active PKC-betaII. Am. J. Physiol. Cell Physiol. 282:C768–C774.

    Google Scholar 

  • Almers, W., E.W. McCleskey, and P.T. Palade. 1984. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. 353:565–583.

    Google Scholar 

  • Almers, W., and E.W. McCleskey. 1984. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single file pore. J. Physiol. 353:585–608.

    Google Scholar 

  • Anzai, K., K. Ogawa, T. Ozawa, and H. Yamamoto. 2000. Oxidative modification of ion channel activity of ryanodine receptor [Review] [28 refs]. Antioxidants Redox Signaling 2:35–40.

    Article  Google Scholar 

  • Armstrong, C.M., and J. Neyton. 1991. Ion permeation through calcium channels—a one site model. Ann. N.Y. Acad. Sci. 635:18–25.

    Article  ADS  Google Scholar 

  • Armstrong, C.M., and D.R. Matteson. 1985. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227:65–67.

    Article  ADS  Google Scholar 

  • Artalejo, C.R., M.A. Ariano, R.L. Perlman, and A.P. Fox. 1990. Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through cAMP/protein kinase A-dependent mechanism. Nature 348:239–242.

    Article  ADS  Google Scholar 

  • Artalejo, C.R., R.L. Perlman, and A.P. Fox. 1992. ω-conotoxin GVIA blocks a Ca2+ current in bovine chromaffin cells that is not the “classic” N-type. Neuron 8: 85–95.

    Article  Google Scholar 

  • Bahinski, A., A. Yatani, G. Mikala, S. Tang, S. Yamamoto, and A. Schwartz. 1997. Charged amino acids near the pore entrance influence ion-conduction of a human L-type cardiac calcium channel. Mol. Cell. Biochem. 166:125–134.

    Article  Google Scholar 

  • Barreiro, G., C.R. Guimaraes, and R.B. de Alencastro. 2002. A molecular dynamics study of an L-type calcium channel model. Protein Eng. 15:109–122.

    Article  Google Scholar 

  • Barreiro, G., C.R. Guimaraes, and R.B. de Alencastro. 2003. Potential of mean force calculations on an L-type calcium channel model. Protein Eng. 16:209–215.

    Article  Google Scholar 

  • Bean, B.P., M.C. Nowycky, and R.W. Tsien. 1984. Beta-adrenergetic modulation of calcium channels in frog ventricular heart-cells. Nature 307:371–375.

    Article  ADS  Google Scholar 

  • Beguin, P., K. Nagashima, T. Gonoi, T. Shibasaki, K. Takahashi, Y. Kashima, N. Ozaki, K. Geering, T. Iwanaga, and S. Seino. 2001. Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411:701–706.

    Article  ADS  Google Scholar 

  • Belevych, A.E., I. Juranek, and R.D. Harvey. 2004. Protein kinase C regulates functional coupling of beta1adrenergic receptors to Gi/o-mediated responses in cardiac myocytes. FASEB J. 18:367–369.

    Google Scholar 

  • Belevych, A.E., A. Nulton-Persson, C. Sims, and R.D. Harvey. 2001. Role of tyrosine kinase activity in alpha-adrenergic inhibition of the beta-adrenergically regulated L-type Ca(2+) current in guinea-pig ventricular myocytes. J Physiol. 537:779–792.

    Article  Google Scholar 

  • Berrou, L., G. Bernatchez, and L. Parent. 2001. Molecular determinants of inactivation within the I-II linker of alpha1E (CaV2.3) calcium channels. Biophys. J. 80:215–228.

    Article  Google Scholar 

  • Bezanilla, F., and C.M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid giant axons. J. Gen. Physiol. 60:588–608.

    Article  Google Scholar 

  • Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754.

    Article  ADS  Google Scholar 

  • Bichet, D., V. Cornet, S. Geib, E. Carlier, S. Volsen, T. Hoshi, Y. Mori, and M. De Waard. 2000. The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 25:177–190.

    Article  Google Scholar 

  • Birnbaumer, L., K.P. Campbell, W.A. Catterall, M.M. Harpold, F. Hofmann, W.A. Horne, Y. Mori, A. Schwartz, T.P. Snutch, T. Tanabe, et al. 1994. The naming of voltage-gated calcium channels. Neuron 13:505–506.

    Article  Google Scholar 

  • Birnbaumer, L., N. Qin, R. Olcese, E. Tareilus, D. Platano, J. Costantin, and E. Stefani. 1998. Structures and functions of calcium channel beta subunits. J. Bioenerg. Biomembr. 30:357–375.

    Article  Google Scholar 

  • Blumenstein, Y.,N. Kanevsky, G. Sahar, R. Barzilai, T. Ivanina, andN. Dascal. 2002. Anovel long N-terminal isoformof human L-type Ca2+ channel is up-regulated by protein kinase C. J. Biol. Chem. 277:3419–3423.

    Article  Google Scholar 

  • Boda, D., D. Busath, D. Henderson, and S. Sokolowski. 2000. Monte Carlo simulations of the mechanism for channel selectivity: The competition between volume exclusion and charge neutrality. J. Phys. Chem. 104:8903–8910.

    Google Scholar 

  • Bosanac, I., J.R. Alattia, T.K. Mal, J. Chan, S. Talarico, F.K. Tong, K.I. Tong, F. Yoshikawa, T. Furuichi, M. Iwai, T. Michikawa, K. Mikoshiba, and M. Ikura. 2002. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700.

    Article  ADS  Google Scholar 

  • Budde, T., S. Meuth, and H.C. Pape. 2002. Calcium-dependent inactivation of neuronal calcium channels. Nat. Rev. Neurosci. 3:873–883.

    Article  Google Scholar 

  • Bultynck, G., E. Vermassen, K. Szlufcik, P. De Smet, R.A. Fissore, G. Callewaert, L. Missiaen, H. De Smedt, and J.B. Parys. 2003. Calcineurin and intracellular Ca2+-release channels: Regulation or association? Biochem. Biophys. Res. Commun. 311:1181–1193.

    Article  Google Scholar 

  • Caillard, O., Y. Ben-Ari, and J.L. Gaiarsa. 2000. Activation of pre-synaptic and postsynaptic ryanodine-sensitive calcium stores is required for the induction of long-term depression atGABA-ergic synapses in the neonatal rat hippocampus. J. Neurosci. 20(17):RC94.

    Google Scholar 

  • Campbell, D.L., J.S. Stamler, and H.C. Strauss. 1996. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J. Gen. Physiol. 108:277–293.

    Article  Google Scholar 

  • Catterall, W.A. 2000. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26:13–25.

    Article  Google Scholar 

  • Catterall, W.A., J. Striessnig, T.P. Snutch, and E. Perez-Reyes. 2003. International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: Calcium channels. Pharmacol. Rev. 55:579–581.

    Article  Google Scholar 

  • Catterall, W.A., E. Perez-Reyes, T.P. Snutch, and J. Striessnig. 2005. International Union of Pharmacology. XLVIII. Nomenclature and structure–function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57:411–425.

    Article  Google Scholar 

  • Cens, T., S. Restituito, S. Galas, and P. Charnet. 1999. Voltage and calcium use the same molecular determinants to inactivate calcium channels. J. Biol. Chem. 274:5483–5490.

    Article  Google Scholar 

  • Chandra, R., V.S. Chauhan, C.F. Starmer, and A.O. Grant. 1999. beta-Adrenergic action on wild-type and KPQ mutant human cardiac Na+ channels: Shift in gating but no change in Ca2+:Na+ selectivity. Cardiovasc. Res. 42:490–502.

    Article  Google Scholar 

  • Chang, F.C., and M.M. Hosey. 1988. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J. Biol. Chem. 263:18929–18937.

    Google Scholar 

  • Chaudhuri, D., B.A. Alseikhan, S.Y. Chang, T.W. Soong, and D.T. Yue. 2005. Developmental activation of calmodulin dependent facilitation of cerebellar P-type Ca2+ current. J. Neurosci. 25:8282–8294.

    Article  Google Scholar 

  • Chen, X.H., I. Bezprozvanny, and R.W. Tsien. 1996. Molecular basis of proton block of L-type Ca2+ channels. J. Gen. Physiol. 108:363–374.

    Article  Google Scholar 

  • Chen, X.H., and R.W. Tsien. 1997. Aspartate substitutions establish the concerted action of p-region glutamates in repeats I and III in forming the protonation site of L-type Ca2+ channels. J. Biol. Chem. 272:30002–30008.

    Article  Google Scholar 

  • Chen, Y.H., M.H. Li, Y. Zhang, L.L. He, Y. Yamada, A. Fitzmaurice, Y. Shen, H. Zhang, L. Tong, and J. Yang. 2004. Structural basis of the α1-β subunit interaction of voltage gated Ca2+ channels. Nature 429:675–680.

    Article  ADS  Google Scholar 

  • Chiamvimonvat, N., B. O’Rourke, T.J. Kamp, R.G. Kallen, F. Hofmann, V. Flockerzi, and E. Marban. 1995. Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels. Circ. Res. 76:325–334.

    Google Scholar 

  • Chien, A.J., X. Zhao, R.E. Shirokov, T.S. Puri, C.F. Chang, D. Sun, E. Rios, and M.M. Hosey. 1995. Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca2+ channels. J. Biol. Chem. 270:30036–30044.

    Article  Google Scholar 

  • Chow, R.H. 1991. Cadmium block of squid calcium currents. Macroscopic data and a kinetic model. J. Gen. Physiol. 98:751–770.

    Article  Google Scholar 

  • Cibulsky, S.M., andW.A. Sather. 2000. The EEEE locus is the sole high-affinity Ca2+ binding structure in the pore of a voltage-gated Ca2+ channel–Block by Ca2+ entering from the intracellular pore entrance. J. Gen. Physiol. 116:569–585.

    Article  Google Scholar 

  • Cloues, R.K., S.J. Tavalin, and N.V. Marrion. 1997. Beta-adrenergic stimulation selectively inhibits long-lasting L-type calcium channel facilitation in hippocampal pyramidal neurons. J. Neurosci. 17:6493–6503.

    Google Scholar 

  • Colecraft, H.M., B. Alseikhan, S.X. Takahashi, D. Chaudhuri, S. Mittman, V. Yegnasubramanian, R.S. Alvania, D.C. Johns, E. Marban, and D.T. Yue. 2002. Novel functional properties of Ca(2+) channel beta subunits revealed by their expression in adult rat heart cells. J. Physiol. 541:435–452.

    Article  Google Scholar 

  • Corry, B., S. Kuyucak, and S.H. Chung. 2000a. Invalidity of continuum theories of electrolytes in nanopores. Chem. Phys. Lett. 320:35–41.

    Article  ADS  Google Scholar 

  • Corry, B., S.Kuyucak, and S.H. Chung. 2000b.Tests of continuum theories as models of ion channels: II. Poisson–Nernst–Planck theory versus brownian dynamics. Biophys. J. 78:2364–2381.

    Article  Google Scholar 

  • Corry, B., T.W. Allen, S. Kuyucak, and S.H. Chung. 2000c. A model of calcium channels. Biochim. Biophys. Acta 1509:1–6.

    Article  Google Scholar 

  • Corry, B.,T.W. Allen, S.Kuyucak, and S.H. Chung. 2001. Mechanisms of permeation and selectivity in calcium channels. Biophys. J. 80:195–214.

    Google Scholar 

  • Corry, B., T. Vora, and S.H. Chung. 2005. Electrostatic basis of valence selectivity in cationic channels. Biochim. Biophys. Acta 1711:72–86.

    Article  Google Scholar 

  • Coulter, D.A., J.R. Huguenard, and D.A. Prince. 1989. Calcium currents in rat thalamocortical relay neurons: Kinetic properties of the transient, low threshold current. J. Physiol. 414:587–604.

    Google Scholar 

  • Curtis, B.M., and W.A. Catterall. 1984. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23:2133–2138.

    Article  Google Scholar 

  • Dang, T.X., and E.W. McCleskey. 1998. Ion channel selectivity through stepwise changes in binding affinity. J. Gen. Physiol. 111:185–193.

    Article  Google Scholar 

  • DeMaria, S.D., T.W. Soong, B.A. Alseikhan, R.S. Alvania, and D.T. Yue. 2001. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489.

    Article  ADS  Google Scholar 

  • DeWaard, M., H. Liu, D.Walker, V.E. Scott, C.A. Gurnett, and K.P. Campbell. 1997. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450.

    Article  ADS  Google Scholar 

  • DelPrincipe, F., M. Egger, and E. Niggli. 2000. L-type Ca2+ current as the predominant pathway of Ca2+ entry during I(Na) activation in beta-stimulated cardiac myocytes. J. Physiol. 527(Pt 3):455–466.

    Article  Google Scholar 

  • Dipolo, R., and L. Beauge. 2006. Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86:155–203.

    Article  Google Scholar 

  • Disatnik, M.H., G. Buraggi, and D. Mochly-Rosen. 1994. Localization of protein kinase C isozymes in cardiac myocytes. Exp. Cell Res. 210:287–297.

    Article  Google Scholar 

  • Dolphin, A.C. 1996. Facilitation of Ca2+ current in excitable cells. Trends Neurosci. 19:35–43.

    Article  Google Scholar 

  • Dolphin, A.C. 1998. Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J. Physiol. 506(Pt 1):3–11.

    Article  Google Scholar 

  • Dolphin, A.C. 2003. Beta subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 35:599–620.

    Article  Google Scholar 

  • Dosemeci, A., R.S. Dhallan, N.M. Cohen, W.J. Lederer, and T.B. Rogers. 1988. Phorbol ester increases calcium current and simulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ. Res. 62:347–357.

    Google Scholar 

  • Doughty, S.W., F.E. Blaney, andW.G. Richards. 1995. Models of ion pores in N-type voltage gated calcium channels. J. Mol. Graph. 13:342–348.

    Article  Google Scholar 

  • Douglas, W.W. 1968. Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34:453–474.

    Google Scholar 

  • Dunlap, K., and G.D. Fischbach. 1978. Neurotransmitters decrease the calcium component of sensory neuron action potentials. Nature 276:837–839.

    Article  ADS  Google Scholar 

  • Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium of K+ conduction and channel: Molecular basis selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation. Biophys. J. 2(Pt 2):259–323.

    Article  ADS  Google Scholar 

  • Ellinor, P.T., J. Yang, W.A. Sather, J.F. Zhang, and R.W. Tsien. 1995. Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions.Neuron 15:1121–1132.

    Article  Google Scholar 

  • Ellis, S.B., M.E. Williams, N.R. Ways, R. Brenner, A.H. Sharp, A.T. Leung, K.P. Campbell, E.McKenna, W.J.Koch, A. Hui, et al. 1988. Sequence and expression ofmRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. Science 241:1661–1664.

    Article  ADS  Google Scholar 

  • Erickson, M.G., B.A. Alselkhan, B.Z. Peterson, and D.T. Yue. 2001. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 31:973–985.

    Article  Google Scholar 

  • Ertel, E.A., K.P. Campbell, M.M. Harpold, F. Hofmann, Y. Mori, E. Perez-Reyes, A. Schwartz, T.P. Snutch, T. Tanabe, L. Birnbaumer, R.W. Tsien, and W.A. Catterall. 2000. Nomenclature of voltage-gated calcium channels. Neuron 25:533–535.

    Article  Google Scholar 

  • Fatt, P., and B. Katz. 1953. The electrical properties of crustacean muscle fibres. J. Physiol. 120:374–389.

    Google Scholar 

  • Fatt, P., and B.L. Ginsborg. 1958. The ionic requirements for the production of action potentials in crustacean muscle fibres. J. Physiol. 142:516–543.

    Google Scholar 

  • Fearon, I.M., A.C. Palmer, A.J. Balmforth, S.G. Ball, G. Mikala, A. Schwartz, and C. Peers. 1997. Hypoxia inhibits the recombinant alpha 1C subunit of the human cardiac L-type Ca2+ channel. J. Physiol. 500:551–556.

    Google Scholar 

  • Fearon, I.M., A.C. Palmer, A.J. Balmforth, S.G. Ball, G. Varadi, and C. Peers. 1999. Modulation of recombinant human cardiac L-type Ca2+ channel alpha1C subunits by redox agents and hypoxia. J. Physiol. 514:629–637.

    Article  Google Scholar 

  • Fearon, I.M., G. Varadi, S. Koch, I. Isaacsohn, S.G. Ball, and C. Peers. 2000. Splice variants reveal the region involved in oxygen sensing by recombinant human L-type Ca2+ channels. Circ. Res. 87:537–539.

    Google Scholar 

  • Felix, R., C.A. Gurnett, M. De Waard, and K.P. Campbell. 1997. Dissection of functional domains of the voltage-dependent Ca2+ channel alpha2delta subunit. J. Neurosci. 17:6884–6891.

    Google Scholar 

  • Ferris, C.D., A.M. Cameron, D.S. Bredt, R.L. Huganir, and S.H. Snyder. 1991a. Inositol 1,4,5-trisphosphate receptor is phosphorylated by cyclic AMP-dependent protein kinase at serines 1755 and 1589. Biochem. Biophys. Res. Commun. 175:192–198.

    Article  Google Scholar 

  • Fenwick, E.M., A. Marty, and E. Neher. 1982. Sodium and calcium channels in bovine chromaffin cells. J. Physiol. 331:599–635.

    Google Scholar 

  • Ferris, C.D., R.L. Huganir, D.S. Bredt, A.M. Cameron, and S.H. Snyder. 1991b. Inositol trisphosphate receptor: Phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. USA 88:2232–2235.

    Article  ADS  Google Scholar 

  • Fill, M., and J.A. Copello. 2002. Ryanodine receptor calcium release channels. Physiol. Rev. 82:893–922.

    Google Scholar 

  • Franco-Obregon, A., and J. Lopez-Barneo. 1996a. Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries [published erratum appears in J Physiol (Lond) 1996 Jun 15;493(Pt 3):923]. J. Physiol. 491:511–518.

    Google Scholar 

  • Franco-Obregon, A., and J. Lopez-Barneo. 1996b. LowPO2 inhibits calcium channel activity in arterial smooth muscle cells. Am. J. Physiol. 271:H2290–H2299.

    Google Scholar 

  • Franco-Obregon, A., J. Urena, and J. Lopez-Barneo. 1995. Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc. Natl. Acad. Sci. USA 92:4715–4719.

    Article  ADS  Google Scholar 

  • Franzini-Armstrong, C., and F. Protasi. 1997. Ryanodine receptors of striated muscles: A complex channel capable of multiple interactions. Physiol. Rev. 77:699–729.

    Google Scholar 

  • French, R.J., J.F.Worley III, W.F.Wonderlin, A.S.Kularatna, and B.K. Krueger 1994. Ion permeation, divalent ion block, and chemical modification of single sodium channels. J. Gen. Physiol. 103:447–470.

    Article  Google Scholar 

  • French, R.J., and G.W. Zamponi. 2005. Voltage-gated sodium and calcium channels in nerve, muscle and heart. IEEE Trans. Nanobiosci. 4:58–69.

    Article  Google Scholar 

  • Fukuda, N., O.U. Jin, D. Sasaki, H. Kajiwara, S. Ishiwata, and S. Kurihara. 2001a. Acidosis or inorganic phosphate enhances the length dependence of tension in rat skinned cardiac muscle. J. Physiol. 536:153–160.

    Article  Google Scholar 

  • Fukuda, N., D. Sasaki, S. Ishiwata, and S. Kurihara. 2001b. Length dependence of tension generation in rat skinned cardiac muscle: Role of titin in the Frank- Starling mechanism of the heart. Circulation 104:1639–1645.

    Article  Google Scholar 

  • Fukushima, A., and S. Hagiwara. 1985. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. J. Physiol. 358:255–284.

    Google Scholar 

  • George, C.H., C.C.Yin, and F.A. Lai. 2005. Toward a molecular understanding of the structure–function of ryanodine receptor Ca2+ release channels–perspectives from recombinant expression systems. Cell Biochem. Biophys. 42:197–222.

    Article  Google Scholar 

  • Gerasimenko, O.V., J.V. Gerasimenko, A.V. Tepikin, and O.H. Petersen. 1996. Calcium transport pathways in the nucleus. Pflugers Arch. 432:1–6.

    Article  Google Scholar 

  • Giannattasio, B., S.W. Jones, and A. Scarpa. 1991. Calcium currents in the A7r5 smooth muscle-derived cell line. Calcium-dependent and voltage-dependent inactivation. J. Gen. Physiol. 98:987–1003.

    Article  Google Scholar 

  • Groth, R.D., and P.G. Mermelstein. 2003. Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: A role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J. Neurosci. 23:8125–8134.

    Google Scholar 

  • Gunter, T.E., D.I. Yule, K.K. Gunter, R.A. Eliseev, and J.D. Salter. 2004. Calcium and mitochondria. FEBS Lett. 567:96–102.

    Article  Google Scholar 

  • Guse, A.H., C.P. da Silva, I. Berg, A.L. Skapenko, K. Weber, P. Heyer, M. Hohenegger, G.A. Ashamu, H. Schulze-Koops, B.V. Potter, and G.W.Mayr. 1999. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73.

    Article  ADS  Google Scholar 

  • Guy, H.R., and S.R. Durrel. 1995. Structural models of Na+, Ca2+, and K+ channels. Soc. Gen. Physiol. Ser. 50:1–16.

    Google Scholar 

  • Gyorke, S., and M. Fill. 1993. Ryanodine receptor adaptation: Control mechanism of Ca(2+)-induced Ca2+ release in heart. Science 260:807–809.

    Article  ADS  Google Scholar 

  • Hagar, R.E., A.D. Burgstahler, M.H. Nathanson, and B.E. Ehrlich. 1998. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 396:81–84.

    Article  ADS  Google Scholar 

  • Hagiwara, A., and K.I. Naka. 1964. The initiation of spike potential in barnacle muscle fibres under low intracellular Ca++. J. Gen. Physiol. 48:141–161.

    Article  Google Scholar 

  • Hagiwara, S., J. Fukuda, and D.C. Eaton. 1974. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J. Gen. Physiol. 63:565–578.

    Article  Google Scholar 

  • Hagiwara, S., S. Miyazaki, S. Krasne, and S. Ciani. 1977. Anomalous permeabilities of the egg cell membrane of star fish in K+–Ti+ mixtures. J. Gen. Physiol. 70:269–281.

    Article  Google Scholar 

  • Halestrap, A.P., E. Doran, J.P. Gillespie, and A. O’Toole. 2000. Mitochondria and cell death. Biochem. Soc. Trans. 28:170–177.

    Google Scholar 

  • Halestrap, A.P., P.M. Kerr, S. Javadov, and K.Y. Woodfield. 1998. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta. 1366:79–94.

    Article  Google Scholar 

  • He, J.Q., Y. Pi, J.W. Walker, and T.J. Kamp. 2000. Endothelin-1 and photoreleased diacylglycerol increase L-type Ca2+ current by activation of protein kinase C in rat ventricular myocytes. J. Physiol. 524:807–820.

    Article  Google Scholar 

  • Heinemann, S.H., H. Terlan, W. Stühmer, K. Imoto, and S. Numa. 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443.

    Article  ADS  Google Scholar 

  • Herlitze, S., D.E. Garcia, K. Mackie, B. Hille, T. Scheuer, and W.A. Catterall. 1996. Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262.

    Article  ADS  Google Scholar 

  • Herlitze, S., G.H. Hockerman, T. Scheuer, and W.A. Catterall. 1997. Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel alpha1A subunit. Proc. Natl. Acad. Sci. USA 94:1512–1516.

    Article  ADS  Google Scholar 

  • Hess, P., and R.W. Tsien. 1984. Mechanism of ion permeation through calcium channels. Nature 309:453–456.

    Article  ADS  Google Scholar 

  • Hess, P., J.B. Lansman, and R.W. Tsien. 1986. Calcium channel selectivity for divalent and monovalent cations: Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88:293–319.

    Article  Google Scholar 

  • Heidelberger, R., and G. Matthews. 1992. Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. J. Physiol. 447:235–256.

    Google Scholar 

  • Hille, B. 2001. Ion Channels of Excitable Membranes, 3rd Ed. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hodgkin, A.L., and R.D. Keynes. 1957. Movements of labelled calcium in squid giant axons. J. Physiol. 138:253–281.

    Google Scholar 

  • Hofmann, F.,L. Lacinová, andN. Klugbauer. 1999.Voltage-dependent calcium channels: From structure to function. Rev. Physiol. Biochem. Pharmacol. 139:33–87.

    Article  Google Scholar 

  • Hool, L.C. 2000. Hypoxia increases the sensitivity of the L-type Ca(2+) current to beta-adrenergic receptor stimulation via a C2 region-containing protein kinase C isoform. Circ. Res. 87:1164–1171.

    Google Scholar 

  • Hool, L.C. 2001. Hypoxia alters the sensitivity of the L-type Ca(2+) channel to alpha-adrenergic receptor stimulation in the presence of beta-adrenergic receptor stimulation. Circ. Res. 88:1036–1043.

    Article  Google Scholar 

  • Hool, L.C., and P.G. Arthur. 2002. Decreasing cellular hydrogen peroxide with catalase mimics the effects of hypoxia on the sensitivity of the L-type Ca2+ channel to beta-adrenergic receptor stimulation in cardiac myocytes. Circ. Res. 91:601–609.

    Article  Google Scholar 

  • Hool, L.C., L.M. Middleton, and R.D. Harvey. 1998. Genistein increases the sensitivity of cardiac ion channels to beta-adrenergic receptor stimulation. Circ. Res. 83:33–42.

    Google Scholar 

  • Hosey, M.M., J. Barhanin, A. Schmid, S. Vandaele, J. Ptasienski, C. Ocallahan, C. Cooper, and M. Lazdunski. 1987. Photoaffinity labelling and phosphorylation of a 165 kilo-dalton peptide associated with dihydropyridine and phenylalkylamine-sensitive calcium channels. Biochem. Biophys. Res. Commun. 147:1137–1145.

    Article  Google Scholar 

  • Huguenard, J.R. 1996. Low-threshold calcium currents in central nervous system neurons. Annu. Rev. Physiol. 58:329–348.

    Article  Google Scholar 

  • Hu, H., N. Chiamvimonvat, T. Yamagishi, and E. Marban. 1997. Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ. Res. 81:742–752.

    Google Scholar 

  • Hulme, J.T., T.W. Lin, R.E. Westenbroek, T. Scheuer, and W.A. Catterall. 2003. Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc. Natl. Acad. Sci. USA 100:13093–13098.

    Article  ADS  Google Scholar 

  • Ikeda, S.R. 1996. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 380:255–258.

    Article  ADS  Google Scholar 

  • Jay, S.D., S.B. Ellis, A.F. McCue, M.E. Williams, T.S. Vedvick, M.M. Harpold, and K.P. Campbell. 1990. Primary structure of the gamma subunit of the DHP sensitive calcium channel from skeletal muscle. Science 248:490–492.

    Article  ADS  Google Scholar 

  • Jiang, Y.X., A. Lee, J.Y. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41.

    Article  ADS  Google Scholar 

  • Johnson, J.D., C. Snyder, M. Walsh, and M. Flynn. 1996. Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin. J. Biol. Chem. 271:761–767.

    Article  Google Scholar 

  • Jones, S.W., and T.N. Marks. 1989. Calcium currents in bullfrog sympathetic neurons. II. Inactivation. J. Gen. Physiol. 94:169–182.

    Article  Google Scholar 

  • Jones, SW. 1998. Overview of voltage-dependent calcium channels. J. Bioenerg. Biomembr. 30:299–312.

    Article  Google Scholar 

  • Jones, SW. 2003. Calcium channels: Unanswered questions. J. Bioenerg. Biomembr. 35:461–475.

    Article  Google Scholar 

  • Jouaville, L.S., F. Ichas, E.L. Holmuhamedov, P. Camacho, and J.D. Lechleiter. 1995. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377:438–441.

    Article  ADS  Google Scholar 

  • Ju, Y.K., and D.G. Allen. 1998. Intracellular calcium and Na+–Ca2+ exchange current in isolated toad pacemaker cells. J. Physiol. 508:153–166.

    Article  Google Scholar 

  • Kass, R.S., and M.C. Sanguinetti. 1984. Inactivation of calcium channel current in the calf cardiac Purkinje fibre. Evidence for voltage- and calcium-mediated mechanisms. J. Gen. Physiol. 84:705–726.

    Article  Google Scholar 

  • Keating, M.T., and M.C. Sanguinetti. 2001. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580.

    Article  Google Scholar 

  • Khan, A.A., J.P. Steiner, M.G. Klein, M.F. Schneider, and S.H. Snyder. 1992. IP3 receptor: Localization to plasma membrane of T cells and cocapping with the T cell receptor. Science 257:815–818.

    Article  ADS  Google Scholar 

  • Kim, M.S., T. Morii, L.X. Sun, K. Imoto, and Y. Mori. 1993. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 318:145–148.

    Article  Google Scholar 

  • Kirichok, Y., G. Krapivinsky, and D.E. Clapham. 2004. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364.

    Article  ADS  Google Scholar 

  • Klemic, K.G., C.C. Shieh, G.E. Kirsch, and S.W. Jones. 1998. Inactivation of Kv2.1 potassium channels. Biophys. J. 74:1779–1789.

    Article  ADS  Google Scholar 

  • Klockner, U., and G. Isenberg. 1994. Intracellular pH modulates the availability of vascular L-type Ca2+ channels. J. Gen. Physiol. 103:647–663.

    Article  Google Scholar 

  • Klockner, U., G. Mikala, A. Schwartz, and G. Varadi. 1996. Molecular studies of the asymmetric pore structure of the human cardiac voltage-dependent Ca2+ channel. Conserved residue, Glu-1086, regulates proton-dependent ion permeation. J. Biol. Chem. 271:22293–22296.

    Article  Google Scholar 

  • Klugbauer, N., L. Lacinova, E. Marais, M. Hobom, and F. Hofmann. 1999. Molecular diversity of the calcium channel alpha2delta subunit. J. Neurosci. 19:684–691.

    Google Scholar 

  • Kobrinsky, E., S. Tiwari, V.A. Maltsev, J.B. Harry, E. Lakatta, D.R. Abernethy, and N.M. Soldatov. 2005. Differential role of the alpha1C subunit tails in regulation of the Cav1.2 channel by membrane potential, beta subunits, and Ca2+ ions. J. Biol. Chem. 280:12474–12485.

    Article  Google Scholar 

  • Koch, S.E., I. Bodi, A. Schwartz, and G. Varadi. 2000. Architecture of Ca2+ channel pore lining segments revealed by covalent modification of substituted cysteines. J. Biol. Chem. 275:34493–34500.

    Article  Google Scholar 

  • Kohr G., and I. Mody. 1991. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells. J. Gen. Physiol. 98:941–967.

    Article  Google Scholar 

  • Komalavilas, P., and T.M. Lincoln. 1994. Phosphorylation of the inositol 1,4,5- trisphosphate receptor by cyclic GMP-dependent protein kinase. J. Biol. Chem. 269:8701–8707.

    Google Scholar 

  • Kornhauser, J.M., C.W. Cowan, A.J. Shaywitz, R.E. Dolmetsch, E.C. Griffith, L.S. Hu, C. Haddad, Z. Xia, and M.E. Greenberg. 2002. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34:221–233.

    Article  Google Scholar 

  • Kostyuk, P.G., S.L. Mironov, and Y.M. Shuba. 1983. Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons. J. Membr. Biol. 76:83–93.

    Article  Google Scholar 

  • Kostyuk, P.G.,Y.M. Shuba, A.N. Savchenko, andV.I. Teslenko. 1988. Kinetic characteristics of different calcium channels in the nueronal membrane. In:Bayer Centenary Symposium, the Calcium Channel: Structure, Function and Implications. M. Morad, W. Nayler, S. Kazda, and M. Schramm, editors. Springer-Verlag, Berlin, pp. 442–464.

    Google Scholar 

  • Kraus, R.L., M.J. Sinnegger, A. Koschak, H. Glossmann, S. Stenirri, P. Carrera, and J. Striessnig. 2000. Three new familial hemiplegic migraine mutants affect P/Q-type Ca(2+) channel kinetics. J. Biol. Chem. 275:9239–9243.

    Article  Google Scholar 

  • Kuo, C.C., and P. Hess. 1993a. Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: Two sets of ion binding sites in the pore. J. Physiol. 466:629–655.

    Google Scholar 

  • Kuo, C.C., and P. Hess. 1993b. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J. Physiol. 466:657–682.

    Google Scholar 

  • Lacerda, A.E., D. Rampe, and A.M. Brown. 1988. Effects of protein kinase C activators on cardiac Ca2+ channels. Nature. 335:249–251.

    Article  ADS  Google Scholar 

  • Lansman, J.B., P. Hess, and R.W. Tsien. 1986. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+: Voltage and concentration dependence of calcium entry into the pore. J. Gen. Physiol. 88:321–347.

    Article  Google Scholar 

  • Lebuffe, G., P.T. Schumacker, Z.H. Shao, T. Anderson, H. Iwase, and T.L. vanden Hoek. 2003. ROS and NO trigger early preconditioning: Relationship to mitochondrial KATP channel. Am. J. Physiol. Heart Circ. Physiol. 284:H299–H308.

    Google Scholar 

  • Lee, K.S., and R.W. Tsien. 1984. High selectivity of calcium channels in single dialysed heart cells of guinea-pig. J. Physiol. 354:253–272.

    Google Scholar 

  • Lee, A., S.T. Wong, D. Gallagher, B. Li, D.R. Storm, T. Scheur, and W.A. Catterall. 1999. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159.

    Article  ADS  Google Scholar 

  • Lee, A., H. Zhou, T. Scheuer, and W.A. Catterall. 2003. Molecular determinants of Ca2+/calmodulin-dependent inactivation of L-type calcium channels. Proc. Natl. Acad. Sci. USA 100:16059–16064.

    Article  ADS  Google Scholar 

  • Leite, M.F., E.C. Thrower, W. Echevarria, P. Koulen, K. Hirata, A.M. Bennett, B.E. Ehrlich, and M.H. Nathanson. 2003. Nuclear and cytosolic calcium are regulated independently. Proc. Natl. Acad. Sci. USA 100:2975–2980.

    Article  ADS  Google Scholar 

  • Letts, V.A., R. Felix, G.H. Biddlecome, J. Arikkath, C.L. Mahaffey, A. Valenzuela, F.S. Bartlett II, Y. Mori, K.P. Campbell, and W.N. Frankel. 1998. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat. Genet. 19:340–347.

    Article  Google Scholar 

  • Leung, A.T., T. Imagawa, and K.P. Campbell. 1987. Structural characterization of the 1,4-dihydropyridine receptor of the voltage dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct molecular weight subunits.J. Biol. Chem. 262:7943–7946.

    Google Scholar 

  • Lipkind, G.M., and H.A. Fozzard. 2001. Modeling of the outer vestibule and selectivity filter of the L-type Ca2+ channel. Biochemistry 40:6786–6794.

    Article  Google Scholar 

  • Liang, H., C.D. DeMaria, M.G. Erickson, M.X. Mori, B.A. Alseikhan, and D.T. Yue. 2003. Unified mechanism of Ca(2+) regulation across the Ca(2+) channel family. Neuron 39:951–960.

    Article  Google Scholar 

  • Liu, H., M. DeWaard, V.E.S. Scott, C.A. Gurnett, V.A. Lennon, and K.P. Campbell. 1996. Identification of three subunits of the high affinity ω-conotoxin MVIIC-sensitive Ca2+ channel. J. Biol. Chem. 271:13804–13810.

    Article  Google Scholar 

  • Liu, Y., and D.D. Gutterman. 2002. Oxidative stress and potassium channel function. Clin. Exp. Pharmacol. Physiol. 29:305–311.

    Article  Google Scholar 

  • Llinas, R., M. Sugimori, J.W. Lin, and B. Cherksey. 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA 86:1689–1693.

    Article  ADS  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005. Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309:897–903.

    Article  ADS  Google Scholar 

  • Lopez-Barneo, J., J.R. Lopez-Lopez, J. Urena, and C. Gonzalez. 1988. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–582.

    Article  ADS  Google Scholar 

  • Lui, P.P., F.L. Chan, Y.K. Suen, T.T. Kwok, and S.K. Kong. 2003. The nucleus of HeLa cells contains tubular structures for Ca2+ signaling with the involvement of mitochondria. Biochem. Biophys. Res. Commun. 308:826–833.

    Article  Google Scholar 

  • Lux, H. D., E. Carbone, and H. Zucker. 1990. Na+ currents through low-voltage activated Ca2+ channels of chick sensory neurons: Block by external Ca2+ and Mg2+. J. Physiol. 430:159–188.

    Google Scholar 

  • Lytton, J.,M.Westlin, and M.R. Hanley. 1991. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 266:17067–17071.

    Google Scholar 

  • Mak, D.O., S. McBride, and J.K. Foskett. 1999. ATP regulation of type 1 inositol 1,4,5-trisphosphate receptor channel gating by allosteric tuning of Ca(2+) activation. J. Biol. Chem. 274:22231–22237.

    Article  Google Scholar 

  • Mamas, M.A., andD.A. Terrar. 2001. Inotropic actions of protein kinase C activation by phorbol dibutyrate in guinea-pig isolated ventricular myocytes. Exp. Physiol. 86:561–570.

    Article  Google Scholar 

  • Martin-Moutot, N., C. Leveque, K. Sato, R. Kato, M. Takahashi, and M. Seagar. 1995. Properties of omega conotoxin MVIIC receptors associated with α1A calcium channel subunits in rat brain. FEBS Lett. 366:21–25.

    Article  Google Scholar 

  • Martin-Moutot, N., N. Charvin, C. Leveque, K. Sato, T. Nishi, S. Kozaki, M. Takahashi, and M. Seagar. 1996. Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosomes. J. Biol. Chem. 271:6567–6570.

    Article  Google Scholar 

  • Matteson, D.R., and C.M. Armstrong. 1986. Properties of two types of channels in clonal pituitary cells. J. Gen. Physiol. 87:161–182.

    Article  Google Scholar 

  • Mayer, M.L. 1985. A calcium-activated chloride current generates the after depolarization of rat sensory neurons in culture. J. Physiol. 364:217–239.

    Google Scholar 

  • McCleskey, E.W., and W. Almers. 1985. The Ca channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. USA 82:7149–7153.

    Article  ADS  Google Scholar 

  • McCormack, J.G., A.P. Halestrap, and R.M. Denton. 1990. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70:391–425.

    Google Scholar 

  • McDonald, T.F., S. Pelzer, W. Trautwein, and D.J. Pelzer. 1994. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. [Review] [1868 refs]. Physiol. Rev. 74:365–507.

    Google Scholar 

  • McEnery, M.W., A.M. Snowman, A.H. Sharp, M.E. Adams, and S.H. Snyder. 1991. Purified ω-conotoxin GVIA receptor of rat brain resembles a dihydropyridinesensitive L-type calcium channel. Proc. Natl. Acad. Sci. USA 88:11095–11099.

    Article  ADS  Google Scholar 

  • McFarlane, M.B. 1997. Depolarization-induced slowing of Ca2+ channel deactivation in squid neurons. Biophys. J. 72:1607–1621.

    Article  ADS  Google Scholar 

  • McGeown, J.G. 2004. Interactions between inositol 1,4,5-trisphosphate receptors and ryanodine receptors in smooth muscle: One store or two? Cell Calcium 35:613–619.

    Article  Google Scholar 

  • McHugh, D., E.M. Sharp, T. Scheuer, and W.A. Catterall. 2000. Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain. Proc. Natl. Acad. Sci. USA 97:12334–12338.

    Article  ADS  Google Scholar 

  • Mikami, A., K. Imoto, T. Tanabe, T. Niidome, Y. Mori, H. Takeshima, S. Narumiya, and S. Numa. 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233.

    Article  ADS  Google Scholar 

  • Mochly-Rosen, D. 1995. Localization of protein kinases by anchoring proteins: A theme in signal transduction. Science. 268:247–251.

    Article  ADS  Google Scholar 

  • Mochly-Rosen, D., C.J. Henrich, L. Cheever, H. Khaner, and P.C. Simpson. 1990. A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Reg. 1:693–706.

    Google Scholar 

  • Moy, G., B. Corry, S. Kuyucak, and S.H. Chung. 2000. Tests of continuum theories as models of ion channels: I. Poisson–Boltzmann theory versus Brownian dynamics. Biophys. J. 78:2349–2363.

    Article  Google Scholar 

  • Nakagawa, T., H. Okano, T. Furuichi, J. Aruga, and K. Mikoshiba. 1991. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc. Natl. Acad. Sci. USA 88:6244–6248.

    Article  ADS  Google Scholar 

  • Neher, E. 1975. Ionic specificity of the gramicidin channel and the thallous ion. Biochim. Biophys. Acta 401:540–544.

    Article  Google Scholar 

  • Nonner, W., and B. Eisenberg. 1998. Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-type calcium channels. Biophys. J. 75:1287–1305.

    Article  ADS  Google Scholar 

  • Nonner, W., L. Catacuzzeno, and B. Eisenberg. 2000. Binding and selectivity in L-type Ca channels: A mean spherical approximation. Biophys. J. 79:1976–1992.

    Article  Google Scholar 

  • Nowycky, M.C., A.P. Fox, and R.W. Tsien. 1985a. Long opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K8644. Proc. Natl. Acad. Sci. USA 82:2178–2182.

    Article  ADS  Google Scholar 

  • Nowycky, M.C., A.P. Fox, and R.W. Tsien. 1985b. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443.

    Article  ADS  Google Scholar 

  • Parent, L., and M. Gopalakrishnan. 1995. Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel. Biophys. J. 69:1801–1813.

    Article  ADS  Google Scholar 

  • Parekh, A.B., and J.W. Putney. 2005. Store-operated calcium channels. Physiol. Rev. 85:757–810.

    Article  Google Scholar 

  • Patil, P.G., D.L. Brody, and D.T. Yue. 1998. Preferential closed-state inactivation of nueronal calcium channels. Neuron 20:1027–1038.

    Article  Google Scholar 

  • Peterson, B.Z., C.D. DeMaria, J.P. Adelman, and D.T. Yue. 1999. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22:549–558.

    Article  Google Scholar 

  • Perez-Reyes, E., H.S. Kim, A.E. Lacerda, W. Horne, X.Y. Wei, D. Rampe, K.P. Campbell, A.M. Brown, and L. Birnbaumer. 1989. Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340:233–236.

    Article  ADS  Google Scholar 

  • Pietrobon, D., and P. Hess. 1990. Novel mechanism of voltage-dependent gating in L-type calcium channels. Nature 346:651–655.

    Article  ADS  Google Scholar 

  • Plummer, M.R., and P. Hess. 1991. Reversible uncoupling of inactivation in N-type calcium channels. Nature 351:657–659.

    Article  ADS  Google Scholar 

  • Polo-Parada, L., and S.J. Korn. 1997. Block of N-type calcium channels in check sensory neurons by external sodium. J. Gen. Physiol. 109:693–702.

    Article  Google Scholar 

  • Pragnell, M., M. De Waard, Y. Mori, T. Tanabe, T.P. Snutch, and K.P. Campbell. 1994. Calcium channel beta-subunit binds to a conserved motif in the I–II cytoplasmic linker of the alpha 1-subunit. Nature 368:67–70.

    Article  ADS  Google Scholar 

  • Priori, S.G., and C. Napolitano. 2005. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ channels. J. Clin. Invest. 115:2033–2038.

    Article  Google Scholar 

  • Qin, N., R. Olcese, M. Bransby, T. Lin, and L. Birnbaumer. 1999. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl. Acad. Sci. USA 96:2435–2438.

    Article  ADS  Google Scholar 

  • Qin, N., S. Yagel, M.L. Momplaisir, E.E. Codd, and M.R. D’Andrea. 2002. Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Mol. Pharmacol. 62:485–496.

    Article  Google Scholar 

  • Ramakrishnan, V., D. Hendersen, and D.D. Busath. 2004. Applied field nonequilibrium molecular dynamics simulations of ion exit from a β-barrel model of the L-type calcium channel. Biochim. Biophys. Acta 1664:1–8.

    Article  Google Scholar 

  • Randall, A.D., and R.W. Tsien. 1995. Pharmacological disection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. Neuroscience 15:2995–3012.

    Google Scholar 

  • Randall, A.D., and R.W. Tsien. 1997. Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36:879–893.

    Article  Google Scholar 

  • Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. A prokaryotic voltage-gated sodium channel. Science 294:2372–2375.

    Article  ADS  Google Scholar 

  • Reuter, H., and H. Scholz. 1977. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J. Physiol. 264:17–47.

    Google Scholar 

  • Root, M.J., and R. MacKinnon. 1994. Two identical noninteracting sites for an ion channel revealed by proton transfer. Science. 265:1852–1856.

    Article  ADS  Google Scholar 

  • Sah, P. 1996. Ca(2+)-activated K+ currents in neurons: Types, physiological roles and modulation. Trends Neurosci. 19:150–154.

    Article  Google Scholar 

  • Sanguinetti, M.C. 2002. When the KChIPs are down. Nature Med. 8:18-19.

    Article  Google Scholar 

  • Santana, L.F., A.M. Gomez, and W.J. Lederer. 1998. Ca2+ flux through promiscuous cardiac Na+ channels: Slip-mode conductance. Science 279:1027–1033.

    Google Scholar 

  • Sather, W.A., and E.W. McCleskey. 2003. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65:133–159.

    Article  Google Scholar 

  • Schiefer, A., G. Meissner, and G. Isenberg. 1995. Ca2+ activation and Ca2+ inactivation of canine reconstituted cardiac sarcoplasmic reticulum Ca(2+)-release channels. J. Physiol. 489(Pt 2):337–348.

    Google Scholar 

  • Schneider, T., and F. Hofmann. 1988. The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Eur. J. Biochem. 174:369–375.

    Article  Google Scholar 

  • Schuhmann, K., C. Romanin, W. Baumgartner, and K. Groschner. 1997a. Intracellular Ca2+ inhibits smooth muscle L-type Ca2+ channels by activation of protein phosphatase type 2B and by direct interaction with the channel. J. Gen. Physiol. 110:503–513.

    Article  Google Scholar 

  • Schuhmann, K., C. Voelker, G.F. Hofer, H. Pflugelmeier, N. Klugbauer, F. Hofmann, C. Romanin, and K. Groschner. 1997b. Essential role of the beta subunit in modulation of C-class L-type Ca2+ channels by intracellular pH. FEBS Lett. 408:75–80.

    Article  Google Scholar 

  • Sculptoreanu, A., T. Scheuer, and W.A. Catterall. 1993. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364:240–243.

    Article  ADS  Google Scholar 

  • Schwartz, D.D., and B.P. Naff. 1997. Activation of protein kinase C by angiotensin II decreases beta 1-adrenergic receptor responsiveness in the rat heart. J. Cardiovasc. Pharmacol. 29:257–264.

    Article  Google Scholar 

  • Scriven, D.R., P. Dan, and E.D. Moore. 2000. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys. J. 79:2682–2691.

    Article  Google Scholar 

  • Sham, J.S., L.S. Song, Y. Chen, L.H. Deng, M.D. Stern, E.G. Lakatta, and H. Cheng. 1998. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. USA 95:15096–15101.

    Article  ADS  Google Scholar 

  • Singer, D., M. Biel, I. Lotan, V. Flockerzi, F. Hofmann, and N. Dascal. 1991. The roles of the subunits in the function of the calcium channel. Science 253:1553–1557.

    Article  ADS  Google Scholar 

  • Sipido, K.R., E. Carmeliet, and F.Van deWerf. 1998. T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J. Physiol. 508(Pt 2):439–451.

    Article  Google Scholar 

  • Sipido, K.R., M. Maes, and F. Van de Werf. 1997. Low efficiency of Ca2+ entry through the Na(+)–Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reversemode Na(+)–Ca2+ exchange. Circ. Res. 81:1034–1044.

    Google Scholar 

  • Snutch, T.P., J.P. Leonard, M.M. Gilbert, H.A. Lester, and N. Davidson. 1990. Rat brain expresses a heterogeneous family of calcium channels. Proc. Natl. Acad. Sci. USA 87:3391–3395.

    Article  ADS  Google Scholar 

  • Storm, J.F. 1990. Potassium currents in hippocampal pyramidal cells. Prog. Brain Res. 83:161–187.

    Article  Google Scholar 

  • Stotz, S.C., J. Hamid, R.L. Spaetgens, S.E. Jarvis, and G.W. Zamponi. 2000. Fast inactivation of voltage-dependent calcium channels. A hinged-lid mechanism? J. Biol. Chem. 275:24575–24582.

    Article  Google Scholar 

  • Stotz, S.C., and G.W. Zamponi. 2001. Structural determinants of fast inactivation of high voltage-activated Ca2+ channels. Trends Neurosci. 24:176–182.

    Article  Google Scholar 

  • Stotz, S.C., S.E. Jarvis, and G.W. Zamponi. 2004. Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage-dependent inactivation of HVA calcium channels. J. Physiol. 554(Pt 2):263–273.

    Google Scholar 

  • Striessnig, J., H.G. Knaus, M. Grabner, K. Moosburger, W. Steitz, H. Lietz, and H. Glossmann. 1987. Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett. 212:247–253.

    Article  Google Scholar 

  • Sutko, J.L., and J.A. Airey. 1996. Ryanodine receptor Ca2+ release channels: Does diversity in form equal diversity in function. Physiol. Rev. 76:1027–1071.

    Google Scholar 

  • Swandulla, D., and C.M. Armstrong. 1988. Fast deactivating calcium channels in chick sensory neurons. J. Gen. Physiol. 92:197–218.

    Article  Google Scholar 

  • Swandulla, D., and C.M. Armstrong. 1989. Calcium channel block by cadmium in chick sensory neurons. Proc. Natl. Acad. Sci. USA 86:1736–1740.

    Article  ADS  Google Scholar 

  • Takahashi, M., M.J. Seagar, J.F. Jones, B.F. Reber, and W.A. Catterall. 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA 84:5478–5482.

    Article  ADS  Google Scholar 

  • Tanabe, T., H. Takeshima, A. Mikami, V. Flockerzi, H. Takahashi, K. Kangawa, M. Kojima, H. Matsuo, T. Hirose, and S. Numa. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318.

    Article  ADS  Google Scholar 

  • Taylor, R.E., C.M. Armstrong, and F. Bezanilla. 1976. Block of sodium channels by external calcium ions. Biophys. J. 16:27.

    Article  Google Scholar 

  • Taylor, W.R. 1988. Permeation of barium and cadmium through slowly inactivating calcium channels in cat sensory neurons. J. Physiol 407:433–452.

    Google Scholar 

  • Thévenod, F., and S.W. Jones. 1992. Cadmium block of calcium current in frog sympathetic neurons. Biophys. J. 63:162–168.

    Article  ADS  Google Scholar 

  • Tseng, G.N., and P.A. Boyden. 1991. Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am. J. Physiol. 261:H364–H379.

    Google Scholar 

  • Tsien, R.W., P. Hess, E.W. McCleskey, and R.L. Rosenberg. 1987. Calcium channels: Mechanisms of selectivity, permeation and block. Ann. Rev. Biophys. Chem. 16:265–290.

    Article  Google Scholar 

  • Tsien, R.W., D. Lipscombe, D.V. Madison, K.R. Bley, and A.P. Fox. 1988. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11:431–438.

    Article  Google Scholar 

  • Unni, V.K., S.S. Zakharenko, L. Zablow, A.J. DeCostanzo, and S.A. Siegelbaum. 2004. Calcium release from presynaptic ryanodine-sensitive stores is required for long-term depression at hippocampal CA3–CA3 pyramidal neuron synapses. J. Neurosci. 24:9612–9622.

    Article  Google Scholar 

  • Vanoevelen, J., L. Raeymaekers, J.B. Parys, H. De Smedt, K. Van Baelen, G. Callewaert, F. Wuytack, and L. Missiaen. 2004. Inositol trisphosphate producing agonists do not mobilize the thapsigargin-insensitive part of the endoplasmicreticulum and Golgi Ca2+ store. Cell Calcium 35:115–121.

    Article  Google Scholar 

  • Van Petegem, F., F.C. Chatelain, and D.L. Minor Jr. 2005. Insights into the voltagegated calcium channel regulation from the structure of the CaV1.2 IQ domain- Ca2+/calmodulin complex. Nat. Struct. Mol. Biol. 12:1108–1115.

    Article  Google Scholar 

  • Van Petegem, F., K.A. Clark, F.C. Chatelain, and D.L. Minor Jr. 2004. Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429:671–675.

    Article  ADS  Google Scholar 

  • Vereecke, J., and E. Carmeliet. 1971. Sr action potentials in cardiac Purkinje fibres. II Dependence of the Sr conductance on the external Sr concentration and Sr–Ca antagonism. Pfluegers Arch. 322:565–578.

    Google Scholar 

  • Vergara, C., R. Latorre, N.V. Marrion, and J.P. Adelman. 1998. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8:321–329.

    Article  Google Scholar 

  • Vora, T., B. Corry, and S.H. Chung. 2004. A model of sodium channels. Biochim. Biophys. Acta 1668:106–116.

    Google Scholar 

  • Wang, Cl. 1985. A note on Ca2+ binding to calmodulin. Biochem. Biophys. Res. Commun. 130:426–430.

    Article  Google Scholar 

  • Wahler, G.M., N.J. Rusch, and N. Sperelakis. 1990. 8-Bromo-cyclic GMP inhibits the calcium channel current in embryonic chick ventricular myocytes. Can. J. Physiol. Pharmacol. 68:531–534.

    Google Scholar 

  • Wehrens, X.H.T., S.E. Lenhart, and A.R. Marks. 2005. Intracellular calcium release and cardiac disease. Annu. Rev. Physiol. 67:69–98.

    Article  Google Scholar 

  • Weick, J.P., R.D. Groth, A.L. Isaksen, and P.G. Mermelstein. 2003. Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression. J. Neurosci. 23:3446–3456.

    Google Scholar 

  • Werz, M.A., K.S. Elmslie, and S.W. Jones. 1993. Phosphorylation enhances inactivation of N-type calcium current in bullfrog sympathetic neurons. Plügers. Arch. 424:538–545.

    Article  Google Scholar 

  • Wijetunge, S., and A.D. Hughes. 1995. pp60c-src increases voltage-operated calcium channel currents in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 217:1039–1044.

    Article  Google Scholar 

  • Witcher, D.R., M. De Waard, J. Sakamoto, C. Franzini-Armstrong, M. Pragnell, S.D. Kahl, and K.P. Campbell. 1993. Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 261:486–489.

    Article  ADS  Google Scholar 

  • Wolfe, J.T.,H.Wang, J. Howard, J.C. Garrison, and P.Q. Barrett. 2003. T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 424:209–213.

    Article  ADS  Google Scholar 

  • Wootton, L.L., C.C. Argent, M. Wheatley, and F. Michelangeli. 2004. The expression, activity and localisation of the secretory pathway Ca2+-ATPase (SPCA1) in different mammalian tissues. Biochim. Biophys. Acta. 1664:189–197.

    Article  Google Scholar 

  • Wu, X.S., H.D. Edwards, and W.A. Sather. 2000. Side chain orientation of the selectivity filter of a voltage-gated Ca2+ channel. J. Biol. Chem. 275:31778–31785.

    Article  Google Scholar 

  • Yamasaki, M., R. Masgrau, A.J. Morgan, G.C. Churchill, S. Patel, S.J. Ashcroft, and A. Galione. 2004. Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J. Biol. Chem. 279:7234–7240.

    Article  Google Scholar 

  • Yang, J., P.T. Ellinor, W.A. Sather, J.F. Zhang, and R.W. Tsien. 1993. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161.

    Article  ADS  Google Scholar 

  • Yang, H.T., D. Tweedie, S.Wang, A. Guia, T. Vinogradova, K. Bogdanov, P.D. Allen, M.D. Stern, E.G. Lakatta, and K.R. Boheler. 2002. The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc. Natl. Acad. Sci. USA 99:9225–9230.

    Article  ADS  Google Scholar 

  • Yang, Y., D. Hendersen, and D. Busath. 2003. Applied field molecular dynamics study of a model calcium channel selectivity filter. J. Chem. Phys. 118:4213–4220.

    Article  ADS  Google Scholar 

  • Yatani, A., J. Codina, Y. Imoto, J.P. Reeves, L. Birnbaumer, and A.M. Brown. 1987. A G protein directly regulates mammalian cardiac calcium channels. Science 238:1288–1292.

    Article  ADS  Google Scholar 

  • You, Y., D.J. Pelzer, and S. Pelzer. 1997. Modulation of L-type Ca2+ current by fast and slow Ca2+ buffering in guinea pig ventricular cardiomyocytes. Biophys. J. 72:175–187.

    Article  ADS  Google Scholar 

  • Yue, D.T., P.H. Backx, and J.P. Imredy. 1990. Calcium-sensitive inactivation in the gating of single calcium channels. Science 250:1735–1738.

    Article  ADS  Google Scholar 

  • Yue, L.X., B. Navarro, D.J. Ren, A. Ramos, and D.E. Clapham. 2002. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120:845–853.

    Article  Google Scholar 

  • Zeng, W., D.O. Mak, Q. Li, D.M. Shin, J.K. Foskett, and S. Muallem. 2003. A new mode of Ca2+ signaling by G protein-coupled receptors: Gating of IP3 receptor Ca2+ release channels by Gbetagamma. Curr. Biol. 13:872–876.

    Article  Google Scholar 

  • Zhang, J.F., A.D. Randall, P.T. Ellinor, W.A. Horne, W.A. Sather, T. Tanabe, T.L. Scwarz, and R.W. Tsien. 1993. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Nueropharmacology 32:1075–1088.

    Article  Google Scholar 

  • Zhang, S.L., Y. Yu, J. Roos, J.A. Kozak, T.J. Deerinck, M.H. Ellisman, K.A. Stauderman, and M.D. Cahalan. 2005. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905.

    Article  ADS  Google Scholar 

  • Zhang, Z.H., J.A. Johnson, L. Chen, N. El-Sherif, D. Mochly-Rosen, and M. Boutjdir. 1997. C2 region-derived peptides of beta-protein kinase C regulate cardiac Ca2+ channels. Circ. Res. 80:720–729.

    Google Scholar 

  • Zhou, Z., and C.T. January. 1998. Both T- and L-type Ca2+ channels can contribute to excitation–contraction coupling in cardiac Purkinje cells. Biophys. J. 74:1830–1839.

    Article  ADS  Google Scholar 

  • Zühlke, R.D., G.S. Pitt, K. Deisseroth, R.W. Tsien, and H. Reuter. 1999. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162.

    Article  ADS  Google Scholar 

  • Zühlke, R.D., G.S. Pitt, R.W. Tsien, and H. Reuter. 2000. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. J. Biol. Chem. 275:21121–21129.

    Article  Google Scholar 

  • Zweifach, A., and R.S. Lewis. 1993. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. USA 90:6295–6299.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Corry, B., Hool, L. (2007). Calcium Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_7

Download citation

Publish with us

Policies and ethics