Skip to main content

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 431 Accesses

Abstract

The highly calcium-selective ion channels formed by the Orai proteins represent a principal route for the agonist-induced entry of extracellular calcium in non-excitable cells, a process that is necessary for the generation of the calcium signals involved in the initiation and regulation of a multitude of diverse cellular responses. Consequently, their expression and activities play a major role in the essential functions of a wide range of diverse epithelial tissues. In marked contrast to the voltage-gated calcium channels of excitable cells, the molecular components of these channels (the Orai proteins) and their activation and regulation were only identified a little over 13 years ago. Because of this, there is still much to learn about the details of their unique biophysical properties, modes of activation, and functional roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen V, Swigart P, Cheung R, Cockcroft S, Katan M (1997) Regulation of inositol lipid-specific phospholipase Cδ by changes in Ca2+ ion concentrations. Biochem J 327:545–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambudkar IS (2014) Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 55:297–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amcheslavsky A, Wood ML, Yeromin AV, Parker I, Freites JA, Tobias DJ, Cahalan MD (2015) Molecular biophysics of Orai store-operated Ca2+ channels. Biophys J 108:237–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahra P, Mesher J, Li S, Poll CT, Danahay H (2004) P2Y2-receptor-mediated activation of a contralateral, lanthanide-sensitive calcium entry pathway in the human airway epithelium. Br J Pharmacol 143:91–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (1990) Calcium oscillations. J Biol Chem 265:9583–9586

    CAS  PubMed  Google Scholar 

  • Bird GS, Putney JW Jr (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol 562:697–706

    CAS  PubMed  Google Scholar 

  • Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Puney JW Jr (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bösl M, Stoll G, Nieswandt B (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113:2056–2063

    CAS  PubMed  Google Scholar 

  • Broad LM, Cannon TR, Taylor CW (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol 517:121–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Zhou Y, Nwokonko RM, Loktionova NA, Wang X, Xin P, Trebak M, Wang Y, Gill DL (2016) The Orai1 store-operated calcium channel functions as a hexamer. J Biol Chem 291:25764–25775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carey MA, Card JW, Voltz JW, Voltz JW, Arbes SJ Jr, Germolec DR, Korach KS, Zeldin DC (2007) It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 18:308–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 108:15225–15230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KT, Alevizos I, Liu X, Swaim WD, Yin H, Feske S, Oh-Hora M, Ambudkar IS (2012) STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, Sjogren’s syndrome. Proc Natl Acad Sci U S A 109:14544–14549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coakley RD, Sun H, Clunes LA, Rasmussen JE, Stackhouse JR, Okada SF, Fricks I, Young SL, Tarran R (2008) 17beta-estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia. J Clin Invest 118:4025–4035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Concepcion AR, Feske S (2017) Regulation of epithelial ion transport in exocrine glands by store-operated Ca2+ entry. Cell Calcium 63:53–59

    CAS  PubMed  Google Scholar 

  • Concepcion AR, Vaeth M, Wagner LE, Eckstein M, Hecht L, Yang J, Crottes D, Seidl M, Shin HP, Weidinger C, Cameron S, Turvey SE, Issekutz T, Lacruz RS MI, Cuk M, Yule DI, Feske S (2016) Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. J Clin Invest 126:4303–4318

    PubMed  PubMed Central  Google Scholar 

  • Covington ED, Wu MM, Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21:1897–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Criddle DN, McLaughlin E, Murphy JA, Petersen OH, Sutton R (2007) The pancreas misled: signals to pancreatitis. Pancreatology 7:436–446

    PubMed  Google Scholar 

  • DeHaven WI, Smyth JT, Boyles RR, Bird GS, Putney JW Jr (2008) Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem 283:19265–19273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demuro A, Penna A, Safrina O, Yeromin AV, Amcheslavsky A, Cahalan MD, Parker I (2011) Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. Proc Natl Acad Sci U S A 108:17832–17837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derler I, Schindl R, Fritsch R, Fritsch R, Romanin C (2012) Gating and permeation of Orai channels. Front Biosci 17:1304–1322

    CAS  Google Scholar 

  • Derler I, Plenk P, Fahrner M, Muik M, Jardin I, Schindl R, Gruber HJ, Groschner K, Romanin C (2013) The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem 288:29025–29034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derler I, Butorac C, Krizova A, Stadlbauer M, Muik M, Fahrner M, Frischauf I, Romanin C (2018) Authentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus. J Biol Chem 293:1259–1270

    CAS  PubMed  Google Scholar 

  • Di Capite JL, Bates GJ, Parekh AB (2011) Mast cell CRAC channel as a novel therapeutic target in allergy. Curr Opin Allergy Clin Immunol 11:33–38

    PubMed  Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    CAS  PubMed  Google Scholar 

  • Faouzi M, Hague F, Potier M, Ahidouch A, Sevestre H, Ouadid-Ahidouch H (2011) Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol 226:542–551

    CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    CAS  PubMed  Google Scholar 

  • Fiorio Pla A, Munaron L (2001) Calcium influx, arachidonic acid, and control of endothelial cell proliferation. Cell Calcium 30:235–244

    CAS  PubMed  Google Scholar 

  • Flourakis M, Lehen’kyi V, Beck B, Raphaël M, Vandenberghe M, Abeele FV, Roudbaraki M, Lepage G, Mauroy B, Romanin C, Shuba Y, Skryma R, Prevarskaya N (2010) Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis 1:e75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerasimenko JV, Gryshchenko O, Ferdek PE, Stapleton E, Hébert TO, Bychkova S, Peng S, Begg M, Gerasimenko OV, Petersen OH (2013) Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci U S A 110:13186–13191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Cobos JC, Zhang X, Zhang W, Ruhle B, Motiani RK, Schindl R, Muik M, Spinelli AM, Bisaillon JM, Shinde AV, Fahrner M, Singer HA, Matrougui K, Barroso M, Romanin C, Trebak M (2013) Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ Res 112:1013–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gudlur A, Hogan PG (2017) The STIM-Orai pathway: Orai, the pore-forming subunit of the CRAC channel. Adv Exp Med Biol 993:39–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    CAS  PubMed  Google Scholar 

  • Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    CAS  PubMed  Google Scholar 

  • Hirve N, Rajanikanth V, Hogan PG, Gudlur A (2018) Coiled-coil formation conveys a STIM1 signal from ER lumen to cytoplasm. Cell Rep 22:72–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    CAS  PubMed  Google Scholar 

  • Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Putney JW Jr (1998) Relationship between intracellular calcium store depletion and calcium release-activated calcium current in a mast cell line (RBL-1). J Biol Chem 273:19554–19559

    CAS  PubMed  Google Scholar 

  • Hulot JS, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y, Merkle S, Cazorla O, Ouillé A, Dupuis M, Hadri L, Jeong D, Mühlstedt S, Schmitt J, Braun A, Bénard L, Saliba Y, Laggerbauer B, Nieswandt B, Lacampagne A, Hajjar RJ, Lompré AM, Engelhardt S (2011) Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124:796–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, Chen Y, Hille B, Xu T, Chen L (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci U S A 105:13668–13673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai H, Li YX, Miyashita Y (1993) Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 74:669–677

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385:49–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko WH, Chan HC, Wong PY (1996) Anion secretion induced by capacitative Ca2+ entry through apical and basolateral membranes of cultured equine sweat gland epithelium. J Physiol 497:19–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3:ra82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger B, Albrecht E, Lerch MM (2000) The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol 157:43–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan CY, Putney JW Jr (1990) Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist- sensitive intracellular pool. J Biol Chem 265:678–684

    CAS  PubMed  Google Scholar 

  • Li YS, Wu P, Zhou XY, Chen JG, Cai L, Wang F, Xu LM, Zhang XL, Chen Y, Liu SJ, Huang YP, Ye DY (2008) Formyl-peptide receptor like 1: a potent mediator of the Ca2+ release-activated Ca2+ current ICRAC. Arch Biochem Biophys 478:110–118

    CAS  PubMed  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104:9301–9306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17:794–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luik RM, Wu MM, Buchanan J, Lewis RM (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madl J, Weghuber J, Fritsch R, Derler I, Fahrner M, Frischauf I, Lackner B, Romanin C, Schütz GJ (2010) Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem 285:41135–41142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malli R, Naghdi S, Romanin C, Graier WF (2008) Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J Cell Sci 121:3133–3139

    CAS  PubMed  Google Scholar 

  • Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155

    CAS  PubMed  Google Scholar 

  • Martin SC, Shuttleworth TJ (1994) Ca2+ influx drives agonist-activated [Ca2+]i oscillations in an exocrine cell. FEBS Lett 352:32–36

    CAS  PubMed  Google Scholar 

  • Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, Kiyonaka S, Mori Y, Sato C (2009) Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 284:13676–13685

    CAS  PubMed  PubMed Central  Google Scholar 

  • McAndrew D, Grice DM, Peters AA, Davis FM, Stewart T, Rice M, Smart CE, Brown MA, Kenny PA, Roberts-Thompson SJ, Monteith GR (2011) ORAI1-mediated calcium influx in lactation and in breast cancer. Mol Cancer Ther 10:448–460

    CAS  PubMed  Google Scholar 

  • McNally BA, Prakriya M (2012) Permeation, selectivity and gating in store-operated CRAC channels. J Physiol 590:4179–4191

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNally BA, Somasundaram A, Jairaman A, Jairaman A, Yamashita M, Prakriya M (2013) The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J Physiol 591:2833–2850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melvin JL, Koek L, Zhang GH (1991) A capacitative Ca2+ influx is required for sustained fluid secretion in sublingual mucous acini. Am J Phys 261:G1043–G1050

    CAS  Google Scholar 

  • Mignen O, Shuttleworth TJ (2000) IARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J Biol Chem 275:9114–9119

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J Biol Chem 276:35676–35683

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2003) Ca2+ selectivity and fatty acid specificity of the noncapacitative, arachidonate-regulated Ca2+ (ARC) channels. J Biol Chem 278:10174–10181

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Yule DI, Shuttleworth TJ (2005) Agonist activation of arachidonate-regulated Ca2+-selective (ARC) channels in murine parotid and pancreatic acinar cells. J Physiol 564:791–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579:703–715

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2008a) Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol 586:185–195

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2008b) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586:419–425

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587:4181–4197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan AJ, Jacob R (1996) Ca2+ influx does more than provide releasable Ca2+ to maintain repetitive spiking in human umbilical vein endothelial cells. Biochem J 320:505–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    CAS  PubMed  Google Scholar 

  • Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palty R, Isacoff EY (2016) Cooperative binding of stromal interaction molecule 1 (STIM1) to the N and C termini of calcium release-activated calcium modulator 1 (Orai1). J Biol Chem 29:334–341

    Google Scholar 

  • Paradiso AM, Mason SJ, Lazarowski ER, Boucher RC (1995) Membrane-restricted regulation of Ca2+ release and influx in polarized epithelia. Nature 377:643–646

    CAS  PubMed  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    CAS  PubMed  Google Scholar 

  • Parekh AB, Fleig A, Penner R (1997) The store-operated calcium current I CRAC: nonlinear activation by InsP3 and dissociation from calcium release. Cell 89:973–980

    CAS  PubMed  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parod RJ, Putney JW Jr (1978) The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland. J Physiol 281:371–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peinelt C, Lis A, Beck A, Fleig A, Penner R (2008) 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 586:3061–3073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen OH, Sutton R (2006) Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 27:113–120

    CAS  PubMed  Google Scholar 

  • Petersen OH, Tepikin AV (2008) Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol 70:273–299

    CAS  PubMed  Google Scholar 

  • Petersen OH, Tepikin AV, Gerasimenko JV, Gerasimenko OV, Sutton R, Criddle DN (2009) Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis. Cell Calcium 45:634–642

    CAS  PubMed  Google Scholar 

  • Prakriya M (2009) The molecular physiology of CRAC channels. Immunol Rev 231:88–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Lewis RS (2015) Store-operated calcium currents. Physiol Rev 95:1383–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    CAS  PubMed  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    CAS  PubMed  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    CAS  PubMed  Google Scholar 

  • Putney JW Jr, Huang Y, Bird GS (1998) Calcium signalling in lacrimal acinar cells. Adv Exp Med Biol 438:123–128

    CAS  PubMed  Google Scholar 

  • Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, Petersen OH (2000) Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci U S A 97:13126–13131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    CAS  PubMed  Google Scholar 

  • Ribeiro CM, Putney JW (1996) Differential effects of protein kinase C activation on calcium storage and capacitative calcium entry in NIH 3T3 cells. J Biol Chem 271:21522–21528

    CAS  PubMed  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld M, Davis R, FitzSimmons S, Pepe M, Ramsey B (1997) Gender gap in cystic fibrosis mortality. Am J Epidem 145:794–803

    CAS  Google Scholar 

  • Schindl R, Bergsmann J, Frischauf I, Derler I, Fahrner M, Muik M, Fritsch R, Groschner K, Romanin C (2008) 2-aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J Biol Chem 283:20261–20267

    CAS  PubMed  Google Scholar 

  • Shaw PJ, Feske S (2012) Physiological and pathophysiological functions of SOCE in the immune system. Front Biosci 4:2253–2268

    Google Scholar 

  • Sheridan JT, Gilmore RC, Watson MJ, Archer CB, Tarran R (2013) 17β-estradiol inhibits phosphorylation of stromal interaction molecule 1 (STIM1) protein: implication for store-operated calcium entry and chronic lung diseases. J Biol Chem 288:33509–33518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ (1990) Fluoroaluminate activation of different components of the calcium signal in an exocrine cell. Biochem J 269:417–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ (1996) Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem 271:21720–21725

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ (1999) What drives calcium entry during [Ca2+]i oscillations?--challenging the capacitative model. Cell Calcium 25:237–246

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ (2009) Arachidonic acid, ARC channels, and Orai proteins. Cell Calcium 45:602–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ, Mignen O (2003) Calcium entry and the control of calcium oscillations. Biochem Soc Trans 31:916–919

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1996a) Ca2+ entry modulates oscillation frequency by triggering Ca2+ release. Biochem J 313:815–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1996b) Evidence for a non-capacitative Ca2+ entry during [Ca2+] oscillations. Biochem J 316:819–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1998) Muscarinic receptor activation of arachidonate-mediated Ca2+ entry in HEK293 cells is independent of phospholipase C. J Biol Chem 273:32636–32643

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1999) Discriminating between capacitative and arachidonate-activated Ca2+ entry pathways in HEK293 cells. J Biol Chem 274:31174–31178

    CAS  PubMed  Google Scholar 

  • Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862

    CAS  PubMed  Google Scholar 

  • Takemura H, Putney JW Jr (1989) Capacitative calcium entry in parotid acinar cells. Biochem J 258:409–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemura H, Hughes AR, Thastrup O, Putney JW (1989) Activation of calcium entry by the tumor promoter, thapsigargin, in parotid acinar cells. Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271

    CAS  PubMed  Google Scholar 

  • Thomas AP, Bird GS, Hajnoczky G, Robb-Gaspers LD, Putney JW Jr (1996) Spatial and temporal aspects of cellular calcium signaling. FASEB J 10:1505–1517

    CAS  PubMed  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2011) Orai channel-dependent activation of phospholipase C-δ: a novel mechanism for the effects of calcium entry on calcium oscillations. J Physiol 589:5057–5069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2013a) How many Orai’s does it take to make a CRAC channel? Sci Rep 3:1961

    PubMed  PubMed Central  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2013b) Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1. J Physiol 591:3507–3523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2015) Anchoring protein AKAP79-mediated PKA phosphorylation of STIM1 determines selective activation of the ARC channel, a store-independent Orai channel. J Physiol 593:559–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JL, Mignen O, Shuttleworth TJ (2010) The N-terminal domain of Orai3 determines selectivity for activation of the store-independent ARC channel by arachidonic acid. Channels 4:398–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JL, Zhao Y, Stathopulos PB, Grossfield A, Shuttleworth TJ (2018) Phosphorylation-mediated structural changes within the SOAR domain of stromal interaction molecule 1 enable specific activation of distinct Orai channels. J Biol Chem 293:3145–3155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74:661–668

    CAS  PubMed  Google Scholar 

  • Trebak M (2012) STIM/Orai signalling complexes in vascular smooth muscle. J Physiol 590:4201–4208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vashisht A, Trebak M, Motiani RK (2015) STIM and Orai proteins as novel targets for cancer therapy: a review in the theme: cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol 309:C457–C469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006a) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006b) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang Y, Zhou Y, Hendron E, Mancarella S, Andrake MD, Rothberg BS, Soboloff J, Gill DL (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5:3183

    PubMed  Google Scholar 

  • Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Lu J, Li Z, Yu X, Chen L, Xu T (2006) Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem Biophys Res Commun 350:969–976

    CAS  PubMed  Google Scholar 

  • Yang KT, Chen WP, Chang WL, Su MJ, Tsai KL (2005) Arachidonic acid inhibits capacitative Ca2+ entry and activates non-capacitative Ca2+ entry in cultured astrocytes. Biochem Biophys Res Commun 331:603–613

    CAS  PubMed  Google Scholar 

  • Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–134

    CAS  PubMed  Google Scholar 

  • Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109:5657–5662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yen M, Lokteva LA, Lewis RS (2016) Functional analysis of Orai1 concatemers supports a hexameric stoichiometry for the CRAC channel. Biophys J 111:1897–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung-Yam-Wah V, Lee AK, Tse FW, Tse A (2010) Arachidonic acid stimulates extracellular Ca2+ entry in rat pancreatic β cells via activation of the noncapacitative arachidonate-regulated Ca2+ (ARC) channels. Cell Calcium 47:77–83

    CAS  PubMed  Google Scholar 

  • Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572

    CAS  PubMed  Google Scholar 

  • Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yule DI, Gallacher DV (1988) Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine. FEBS Lett 239:358–362

    CAS  PubMed  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XHYY, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103:9357–9362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Kozak JA, Jiang W, Yeromin AV, Chen J, Yu Y, Penna A, Shen W, Chi V, Cahalan MD (2008) Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J Biol Chem 283:17662–17671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Gonzalez-Cobos JC, Schindl R, Muik M, Ruhle B, Motiani RK, Bisaillon JM, Zhang W, Fahrner M, Barroso M, Matrougui K, Romanin C, Trebak M (2013) Mechanisms of STIM1 activation of store-independent leukotriene C4-regulated Ca2+ channels. Mol Cell Biol 33:3715–3723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang W, Gonzalez-Cobos JC, Jardin I, Romanin C, Matrougui K, Trebak M (2014) Complex role of STIM1 in the activation of store-independent Orai1/3 channels. J Gen Physiol 143:345–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Srinivasan P, Razavi S, Seymour S, Meraner P, Gudlur A, Stathopulos PB, Ikura M, Rao A, Hogan PG (2013) Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20:973–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cai X, Loktionova NA, Wang X, Nwokonko RM, Wang X, Wang Y, Rothberg BS, Trebak M, Gill DL (2016) The STIM1-binding site nexus remotely controls Orai1 channel gating. Nat Commun 7:13725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90:6295–6299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (I CRAC) due to local calcium feedback. J Gen Physiol 105:209–226

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies reported here from the author’s laboratory were supported by NIH grant GM040557 to TJS. The excellent technical assistance of Ms. Jill Thompson is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor J. Shuttleworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shuttleworth, T.J. (2020). Orai Channels. In: Hamilton, K.L., Devor, D.C. (eds) Studies of Epithelial Transporters and Ion Channels. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-55454-5_26

Download citation

Publish with us

Policies and ethics