Skip to main content

Abstract

The emission of so-called cold light is named “luminescence”. According to the origin of the luminescence, four categories can be distinguished: photoluminescence, electroluminescence, chemiluminescence, and bioluminescence. Photoluminescence is generated by absorption of radiation. This category is divided into two phenomena, fluorescence and phosphorescence. Formerly, lifetime was used to discriminate between fluorescence and phosphorescence. Fluorescence is generated by a spin-allowed transition, where no change in multiplicity occurs. In contrast to this, the radiative decay to the ground state responsible for phosphorescence properties is a spinforbidden intercombination transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lakowics, J.R. (1999) Principles of Fluorescence Spectroscopy Kluwer Academic/Plenum Publishers New York: 2 nd Edition.

    Google Scholar 

  2. Marquardt, C.M., Panak, P.J., Apostolidis C., Morgenstern, A., Walther, C., Klenze, R. & Fanghänel, Th. (2004) Radiochim. Acta 92, 445–446.

    Article  Google Scholar 

  3. Kirishima, A., Kimura, T., Tochiyama, O. & Yoshida, Z. (2003) Chem. Comm. 910–911.

    Google Scholar 

  4. Billard, I., Ansoborlo, E., Apperson, K., Arpigny, S., Azenha, M.E., Birch, D., Bros, P., Burrows, H.D., Choppin, G., Coustin, L., Dubois, V., Fanghänel, Th., Geipel, G., Hubert, S., Kim, J.I., Kimura, T., Klenze, R., Kronenberg, A., Kumke, M., Lagarde, G., Lamarque, G., Lis, S., Madic, Ch., Meinrath, G., Moulin, Chr., Nagaishi, R., Parker, D., Planque, G., Scherbaum, F., Simoni, E., Sinkov, S. & Viallesoubranne, C. (2003) Applied Spectroscopy 57, 1027–1031.

    Article  ADS  Google Scholar 

  5. Geipel, G., Brachmann, A., Brendler, V., Bernhard, G. & Nitsche, H. (1996) Radiochim. Acta 75, 199–204.

    Google Scholar 

  6. Deniau, H., Decambox, P., Mauchien, P. & Moulin, C. (1993) Radiochim. Acta 61, 23–28.

    Google Scholar 

  7. Brendler, V., Geipel, G., Bernhard, G. & Nitsche, H. (1996) Radiochim. Acta 74, 75–79.

    Google Scholar 

  8. Wang, Z., Zachara, J.M., McKinley, J.P. (2005) Environ. Sci. Technol. 39, 2651–2659.

    Article  Google Scholar 

  9. Kimura, T. & Kato, Y. (1998) J. Alloys Comp. 271–273; 867–871.

    Google Scholar 

  10. Thouvenot, P., Hubert, S., Moulin, C., Decambox, P. & Mauchien, P. (1993)

    Google Scholar 

  11. Wimmer, H., Kim, J.I., Klenze, R. (1992) Radiochim. Acta 58/59, 165–171.

    Google Scholar 

  12. Frondel, C. (1958) Systematic Mineralogy of Uranium and Thorium Geological Survey Bulletin 1064, Washington, DC.

    Google Scholar 

  13. deNeufille, J.P., Kasdan, A. & Chimenti, R.J.L. (1981) Appl Optics 20, 1279–1296.

    Article  ADS  Google Scholar 

  14. Dunham, J. (1991) http://cat.middlebury.edu/~PHManual/laser.html.

    Google Scholar 

  15. Geipel, G., Bernhard, G., Rutsch, M., Brendler, V. & Nitsche, H. (2000) Radiochim. Acta 88, 757–762.

    Article  Google Scholar 

  16. Rutsch, M., Geipel, G., Brendler, V., Bernhard, G. & Nitsche, H. (1999) Radiochim. Acta 86, 135–141.

    Google Scholar 

  17. Guillaumont, R., Fanghnel, Th., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A. & Rand, M.H. (2003) Chemical Thermodynamics 5, Update of the chemical thermodynamics of uranium, neptunium, plutonium, americium, and technetium. Amsterdam: Elsevier.

    Google Scholar 

  18. Geipel, G. (2005) Internal report FZR.

    Google Scholar 

  19. Bernhard, G., Geipel, G., Brendler, V. & Nitsche, H. (1996) Radiochim. Acta 74, 87–90.

    Google Scholar 

  20. Geipel, G., Bernhard, G., Rutsch, M., Brendler, V. & Nitsche, H. (2000) in Baca, T.E. & Florkowski, T. (eds.), The Environmental Challenges of Nuclear Disarmament, City Kluwer Academic Publishers.

    Google Scholar 

  21. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S. & Nitsche, H. (2001) Radiochim. Acta 89, 511–518.

    Article  Google Scholar 

  22. Kalmykov, S.N. & Choppin, G.R. (2000) Radiochim. Acta 88, 603–606.

    Article  Google Scholar 

  23. Amayri, S., Reich, T., Arnold, Th., Geipel, G. & Bernhard, G. (2005) Journal of Solid State Chemistry 178, 567–577.

    Article  ADS  Google Scholar 

  24. Amayri, S., Arnold, T., Reich, T., Foerstendorf, H., Geipel, G., Bernhard, G. & Massanek, A. (2004) Environ. Sci. Technol 38, 6032–6036.

    Article  Google Scholar 

  25. Amayri, S., Arnold, T., Foerstendorf, H., Geipel, G. & Bernhard, G. (2004) The Canadian Mineralogist 42, 953–962.

    Article  Google Scholar 

  26. Geipel, G. (2000) Internal report FZR.

    Google Scholar 

  27. Gabriel, U., Charlet, L., Schlaepfer, C.W., Vial, J.C., Brachmann, A. & Geipel, G. (2001) J. Colloid Interface Sci. 239, 358–368.

    Article  Google Scholar 

  28. Kowal-Fouchard, A., Drot, R., Simoni, E., Ehrhardt, J.J. (2004) Environmental Science and Technology 38, 1399–1407.

    Article  Google Scholar 

  29. Baumann, N., Brendler, V., Arnold, T., Geipel, G. & Bernhard, G. (2005) J Colloid Interface Sci 290, 318–324.

    Article  Google Scholar 

  30. Baumann, N., Arnold, Th., Geipel, G., Trueman, E., Black, S. & Read, D. (2006), Technical note, Journal of the Total Environment, Publication in progress.

    Google Scholar 

  31. Stumpf, Th., Bauer, S., Coppin, F. & Kim, J.I. (2001) Environmental Science and Technology 35, 3691–3694.

    Article  Google Scholar 

  32. Stumpf, Th., Rabung, Th., Klenze, R., Geckeis, H. & Kim, J.I. (2001)J Colloid Interface Sci. 238, 219–224.

    Article  Google Scholar 

  33. Stumpf, Th. & Fanghänel, Th. (2002) J Colloid Interface Sci. 249, 119–122.

    Article  Google Scholar 

  34. Geipel, G. (2005) Internal report FZR.

    Google Scholar 

  35. Wang, Z., Zachara, J.M., Yantasee, W., Gassmann, P.L., Chongxuan, L. & Joly, A. (2004) Environ. Sci. Technol. 38, 5591–5597.

    Article  Google Scholar 

  36. Wang, Z., Zachara, J.M., Gassman, P.L., Chongxuan, L., Qafoku, O., Yantasee, W. & Catalano, J.G. (2005) Geochim. Cosmochim. Acta 69, 1391–1403.

    Article  ADS  Google Scholar 

  37. Moll, H., Geipel, G., Brendler, V., Bernhard, G. & Nitsche, H. (1998) J. Alloys and Compounds 271–273, 765–768.

    Article  Google Scholar 

  38. Gaft, M., Panczer, G., Reisfeld, R. & Uspensky, E. (2001) Physicsand Chemistry of Minerals 28, 347–363.

    Article  ADS  Google Scholar 

  39. Gaft, M., Shinno, I., Panczer, G. & Reisfeld, R. (2002) Mineralogyand Petrology 76, 235–246.

    Article  Google Scholar 

  40. Gaft, M., Seigel, H., Panczer, G. & Reisfeld, R. (2001) Bull. Liaison S.F.M.C. 13, 76–77.

    Google Scholar 

  41. Piriou, B., Fedoroff, M., Jean, J. & Berics, L. (1997) J. Colloid Interface Sci. 194, 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Geipel, G. (2006). LASER-INDUCED FLUORESCENCE SPECTROSCOPY. In: Vij, D. (eds) Handbook of Applied Solid State Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-37590-2_13

Download citation

Publish with us

Policies and ethics