Skip to main content

Fluorescence Spectroscopy

  • Chapter
  • First Online:
Radiation in Bioanalysis

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 8))

  • 1080 Accesses

Abstract

“Measuring the fluorescence of a sample” refers in common terms to measuring the emission of light emitted by substances following excitation by light. The term comprises both fluorescence and phosphorescence (emission from spin allowed or spin forbidden transitions, respectively) and relates more to the nature of the equipment used: the spectrofluorometer. “Measuring the photoluminescence of a sample” is a more accurate description of the general phenomenon of light emission upon photoexcitation and distinguishes it from electroluminescence and chemiluminescence (light emission after electrical excitation, LEDs, or chemical excitation, fireflies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balzani V, Ceroni P, Juris A (2014) Photochemistry and photophysics: concepts, research, applications. Wiley-VCH Verlag GmbH, Weinheim, pp 103–124

    Google Scholar 

  • Birks JB (1975) Excimers. Rep Prog Phys 38:903–974

    Article  ADS  Google Scholar 

  • Birks JB, Christophorou LG (1963) Excimer fluorescence spectra of pyrene derivatives. Spectrochim Acta 19:401–410

    Article  ADS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  ADS  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  ADS  Google Scholar 

  • Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31:1106–1121

    Article  Google Scholar 

  • Einstein A (1916) Strahlungs-Emission und -Absorption nach der Quantentheorie. Verh Dtsch Phys Ges 18:318–323

    Google Scholar 

  • Eisinger J, Gueron M, Shulman RG, Yamane T (1966) Excimer fluorescence of dinucleotides, polynucleotides, and DNA. Proc Natl Acad Sci USA 55:1015–1020

    Article  ADS  Google Scholar 

  • Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  • Förster T (1975) Excimers and exciplexes. In: Gordon M, Ware WR (eds) The exciplex. Academic Press Inc., London, pp 1–21

    Google Scholar 

  • Förster T, Kasper K (1955) Ein Konzentrationsumschlag der Fluoreszenz des Pyrens. Z Elektrochem 59:976–980

    Google Scholar 

  • Hanssen L (2001) Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples. Appl Opt 40:3196–3204

    Article  ADS  Google Scholar 

  • Hilborn RC (1982) Einstein coefficients, cross sections, f values, dipole moments, and all that. Am J Phys 50:982–986

    Article  ADS  Google Scholar 

  • Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19

    Article  Google Scholar 

  • Kasha M (1952) Collisional perturbation of spin‐orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J Chem Phys 20:71

    Article  ADS  Google Scholar 

  • Leonhardt H, Weller A (1963) Elektronenübertragungsreaktionen des angeregten Perylens. Ber Bunsenges Physik Chem 67:791–795

    Article  Google Scholar 

  • Leyre S, Coutino-Gonzalez E, Joos JJ, Ryckaert J, Meuret Y, Poelman D, Smet PF, Durinck G, Hofkens J, Deconinck G, Hanselaer P (2014) Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup. Rev Sci Instrum 85:123115

    Article  ADS  Google Scholar 

  • Medinger T, Wilkinson F (1965) Mechanism of fluorescence quenching in solution. Trans Faraday Soc 61:620–630

    Article  Google Scholar 

  • Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. CRC Press, New York

    Google Scholar 

  • Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    Article  Google Scholar 

  • Periasamy A (2001) Fluorescence resonance energy transfer microscopy: a mini review. J Biomed Opt 6:287–291

    Article  Google Scholar 

  • Resch-Genger U, Rurack K (2013) Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report). Pure Appl Chem 85:2005–2013

    Article  Google Scholar 

  • Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 5:635–642

    Article  Google Scholar 

  • Rohatgi-Mukherjee KK (1986) Fundamentals of photochemistry, pp 126–160

    Google Scholar 

  • Schaufele F, Demarco I, Day RN (2005) FRET imaging in the wide-field microscope. In: Periasamy A, Day RN (eds) Molecular imaging: FRET microscopy and spectroscopy. Oxford University Press, Oxford, pp 72–94

    Chapter  Google Scholar 

  • Scott DR, Allison JB (1962) Solvent glasses for low temperature spectroscopic studies. J Phys Chem 66:561–562

    Article  Google Scholar 

  • Shindy HA (2017) Fundamentals in the chemistry of cyanine dyes: a review. Dyes Pigm 145:505–513

    Article  Google Scholar 

  • Stevens B (1961) Evidence for the photo-association of aromatic hydrocarbons in fluid media. Nature 192:725–727

    Article  ADS  Google Scholar 

  • Terenin A, Ermolaev V (1956) Sensitized phosphorescence in organic solutions at low temperature: energy transfer between triplet states. Trans Faraday Soc 52:1042–1052

    Article  Google Scholar 

  • Valeur B, Berberan-Santos M (2012) Excitation energy transfer. Molecular fluorescence: principles and applications, 2nd edn. Wiley-VCH, Weinheim, pp 213–261

    Chapter  Google Scholar 

  • Ware WR, Richter HP (1968) Fluorescence quenching via charge transfer: the perylene-N, N-dimethylaniline system. J. Chem. Phys. 48:1595–1601

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carlos Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moro, A.J., Lima, J.C. (2019). Fluorescence Spectroscopy. In: Pereira, A., Tavares, P., Limão-Vieira, P. (eds) Radiation in Bioanalysis. Bioanalysis, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-28247-9_3

Download citation

Publish with us

Policies and ethics