Skip to main content

The Impact of Laser Evolution on Modern Fluorescence Spectroscopy

  • Chapter
  • First Online:
Perspectives on Fluorescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 17))

  • 912 Accesses

Abstract

The judicious use of traditional spectroscopy light sources throughout the postwar era led to the foundations of fluorescence spectroscopy, both theoretically and experimentally. Those principles provided many tools for understanding the structure and dynamics of macromolecules, cells, and even tissues. In the last four decades those tools have been supplemented and sometimes extended by the availability of novel light sources, advanced electronics, and burgeoning computing power. This chapter will chronicle the former – the impact of four decades of laser evolution upon biological fluorescence spectroscopy and microscopy. It is necessarily focused on only the systems that were most popular and influential (many other sources were of great value) and (for space concerns) it also summarizes only a few of the many linked technological advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beechem JM (1992) Multiemission wavelength picosecond time-resolved fluorescence decay data obtained on the millisecond time scale: application to protein: DNA interactions and protein-folding reactions. Proceedings of SPIE, the international society for optical engineering. ISSN: 0277–786X; pp 676–680, doi:10.1117/12.58264.

    Google Scholar 

  2. Gratton E, Limkeman M (1983) A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J 44(3):315–324

    Article  CAS  Google Scholar 

  3. Wang YL, Bourkoff E (1988) Passive modelocking of the Ar+ laser. Appl Opt 27(13):2655

    Article  CAS  Google Scholar 

  4. Halliday L, Topp M (1977) Picosecond luminescence detection using type-2 phasematched frequency-conversion. Chem Phys Lett 46:8

    Article  Google Scholar 

  5. Lapidus LJ, Eaton WA, Hofrichter J (2000) Measuring the rate of intramolecular contact formation in polypeptides. Proc Natl Acad Sci 97(13):7220

    Article  CAS  Google Scholar 

  6. Selinger BK (1983) The pileup problem. In: Cundall RB, Dale RE (eds) Time resolved fluorescence spectroscopy in biochemistry and biology. Plenum, New York

    Google Scholar 

  7. Lin S, Knox RS (1988) Time resolution of a short-wavelength chloroplast fluorescence component at low temperature. J Lumin 40:209–210

    Article  Google Scholar 

  8. Stong CL (1974) Scientific American; ISSN: 0036–8733; Vol. 230(3); pp 110–115, doi: 10.1038/scientificamerican0374-110

    Google Scholar 

  9. Fox RF, James GE, Roy R (1984) Laser with a fluctuating pump: intensity correlations of a dye laser. Phys Rev Lett 52(20):1778–1781

    Article  CAS  Google Scholar 

  10. Liesegang GW, Smith PD (1982) Vidicon characteristics under continuous and pulsed illumination. Appl Opt 21(8):1437–1444

    Article  CAS  Google Scholar 

  11. Maroncelli M, Fleming GR (1987) Picosecond solvation dynamics of coumarin 153: the importance of molecular aspects of solvation. J Chem Phys 86(11):6221–6239

    Article  CAS  Google Scholar 

  12. Rayner DM, Krajcarski DT, Szabo AG (1978) Excited state acid–base equilibrium of tyrosine. Can J Chem 56(9):1238–1245

    Article  CAS  Google Scholar 

  13. Gratton E, Jameson DM, Hall RD (1984) Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng 13(1):105–124

    Article  CAS  Google Scholar 

  14. Gratton E, Jameson D, Rosato N, Weber G (1984) Multifrequency cross-correlation phase fluorometer using synchrotron radiation. Rev Sci Instrum 55:486

    Article  CAS  Google Scholar 

  15. Royer CA (1992) Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants. Biophys J 63(3):741–750

    Article  CAS  Google Scholar 

  16. Keller U, Weingarten KJ, Kartner FX, Kopf D, Braun B, Jung ID, Fluck R, Honninger C, Matuschek N, der Au JA (1996) Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Sel Top Quantum Electron 2(3):435–453

    Article  CAS  Google Scholar 

  17. Denk W, Piston DW, Webb WW (1995) Two-photon molecular excitation in laser-scanning microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, Boston, pp 445–458

    Chapter  Google Scholar 

  18. Lu W, Kim J, Qiu W, Zhong D (2004) Femtosecond studies of tryptophan solvation: correlation function and water dynamics at lipid surfaces. Chem Phys Lett 388(1–3):120–126

    Article  CAS  Google Scholar 

  19. Zhang L, Kao Y-T, Qiu W, Wang L, Zhong D (2006) Femtosecond studies of tryptophan fluorescence dynamics in proteins: local solvation and electronic quenching. J Phys Chem B 110(37):18097–18103

    Article  CAS  Google Scholar 

  20. Xu J, Chen J, Toptygin D, Tcherkasskaya O, Callis P, King J, Brand L, Knutson JR (2009) Femtosecond fluorescence spectra of tryptophan in human γ-crystallin mutants: site-dependent ultrafast quenching. J Am Chem Soc 131(46):16751–16757

    Article  CAS  Google Scholar 

  21. Xu J, Knutson JR (2008) Ultrafast fluorescence spectroscopy via upconversion: applications to biophysics. In: Brand L, Johnson ML (eds) Methods in enzymology, vol 450. Academic Press, St. Louis, pp 159–183

    Google Scholar 

  22. Xu J, Toptygin D, Graver KJ, Albertini RA, Savtchenko RS, Meadow ND, Roseman S, Callis PR, Brand L, Knutson JR (2006) Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIAGlc. J Am Chem Soc 128(4):1214–1221

    Article  CAS  Google Scholar 

  23. Xu J, Shen X, Knutson JR (2003) Femtosecond upconversion study of the rotations of perylene and tetracene in hexadecane. J Phys Chem A 107:8383

    Article  CAS  Google Scholar 

  24. Mantulin WW, Weber G (1977) Rotational anisotropy and solvent–fluorophore bonds: an investigation by differential polarized phase fluorometry. J Chem Phys 66(9):4092–4099

    Article  CAS  Google Scholar 

  25. Rosales T, Xu J, Wu X, Hodoscek M, Callis P, Brooks BR, Knutson JR (2008) Molecular dynamics simulations of perylene and tetracene librations: comparison with femtosecond upconversion data. J Phys Chem A 112(25):5593–5597

    Article  CAS  Google Scholar 

  26. Xu J, Shen X, Knutson JR (2003) Femtosecond upconversion study of the rotations of perylene and tetracene in hexadecane. J Phys Chem A 107:8383

    Article  CAS  Google Scholar 

  27. Weber G (1983) Old and new developments in fluorescence spectroscopy. In: Cundall RB, Dale RE (eds) Time resolved fluorescence spectroscopy in biochemistry and biology. Plenum, New York

    Google Scholar 

  28. Xu J, Chen B, Callis P, Muiño PL, Rozeboom H, Broos J, Toptygin D, Brand L, Knutson JR (2015) Picosecond fluorescence dynamics of tryptophan and 5-fluorotryptophan in monellin: slow water-protein relaxation unmasked. J Phys Chem B 119(11):4230–4239

    Article  CAS  Google Scholar 

  29. Kafka JD, Watts ML, Peterse JW (1992) Quantum Electron 28(10):2151

    Article  CAS  Google Scholar 

  30. Fenske R, Näther DU, Goossens M, Smith SD (2006) New light sources for time correlated single photon counting in commercially available spectrometers/Edinburgh Instruments 25 October 2006/Vol 6372, 63720H/Proc. SPIE

    Google Scholar 

  31. Jay R Knutson (1988) Fluorescence Detection: Schemes To Combine Speed, Sensitivity And Spatial Resolution. In: Joseph R. Lakowicz (ed), Proc. SPIE 0909, Time-Resolved Laser Spectroscopy in Biochemistry; doi:10.1117/12.945368; Published in SPIE Proceedings Vol. 0909

    Google Scholar 

  32. Shen X, Knutson JR (2001) Subpicosecond fluorescence spectra of tryptophan in water. J Phys Chem B 105(26):6260–6265

    Article  CAS  Google Scholar 

  33. Xu J, Knutson JR (2009) Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay. J Phys Chem B 113(35):12084–12089

    Article  CAS  Google Scholar 

  34. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  Google Scholar 

  35. Piston DW, Masters BR, Webb WW (1995) Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J Microsc 178(1):20–27

    Article  CAS  Google Scholar 

  36. Combs CA, Smirnov A, Chess D, McGavern DB, Schroeder JL, Riley J, Kang SS, Lugar‐Hammer M, Gandjbakhche A, Knutson JR (2011) Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED). J Microsc 241(2):153–161

    Article  CAS  Google Scholar 

  37. Combs CA, Smirnov AV, Riley JD, Gandjbakhche AH, Knutson JR, Balaban RS (2007) Optimization of multiphoton excitation microscopy by total emission detection using a parabolic light reflector. J Microsc 228(3):330–337

    Article  CAS  Google Scholar 

  38. Gratton E, vande Ven MJ (1995) Laser sources for confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, Boston, pp 69–97

    Chapter  Google Scholar 

  39. Gratton E, Barry NP, Beretta S, Celli A (2001) Multiphoton fluorescence microscopy. Methods 25(1):103–110

    Article  CAS  Google Scholar 

  40. Berland KM, So PT, Gratton E (1995) Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68(2):694–701

    Article  CAS  Google Scholar 

  41. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77(4):2251–2265

    Article  CAS  Google Scholar 

  42. Docquier A, Garcia A, Savatier J, Boulahtouf A, Bonnet S, Bellet V, Busson M, Margeat E, Jalaguier S, Royer C, Balaguer P, Cavaillès V (2013) Negative regulation of estrogen signaling by ERβ and RIP140 in ovarian cancer cells. Mol Endocrinol 27(9):1429–1441

    Article  CAS  Google Scholar 

  43. Yi L, Rosales T, Rose JJ, Chaudhury B, Knutson JR, Venkatesan S (2010) HIV-1 Nef binds a subpopulation of MHC-I throughout its trafficking itinerary and down-regulates MHC-I by perturbing both anterograde and retrograde trafficking. J Biol Chem 285(40):30884–30905

    Article  CAS  Google Scholar 

  44. Hell SW, Bahlmann K, Schrader M, Soini A, Malak HM, Gryczynski I, Lakowicz JR (1996) Three-photon excitation in fluorescence microscopy. J Biomed Opt 1(1):71–74

    Article  CAS  Google Scholar 

  45. Rosales T, Sackett D, Xu J, Shi ZD, Xu B, LI H, Kaur G, Frohart E, Shenoy N, Cheal S, Dulcey A, HU Y, Li C, Lane K, Griffiths G, Knutson JR (2015) STAQ: a route toward low power, multicolor nanoscopy. Microsc Res Tech 78:1–13

    Google Scholar 

  46. Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys Rev Lett 82(20):4142–4145

    Article  CAS  Google Scholar 

  47. Cheng, Ji-Xin; Xie, Xiaoliang Sunney; Coherent Raman Scattering Microscopy. 05/2012; CRC Press; ISBN:1-4398-6765-8, 978-1-4398-6765-5

    Google Scholar 

  48. Rocha-Mendoza I, Langbein W, Watson P, Borri P (2009) Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses. Opt Lett 34(15):2258–2260

    Article  CAS  Google Scholar 

  49. Kong L, Ji M, Holtom GR, Fu D, Freudiger CW, Xie XS (2013) Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator. Opt Lett 38(2):145–147

    Article  Google Scholar 

  50. Fu D, Holtom G, Freudiger C, Zhang X, Xie XS (2013) Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J Phys Chem B 117(16):4634–4640

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First, thanks to both Professor Weber and David Jameson for encouragement during difficult early career “barrier crossings”; Second, thanks to the many unnamed colleagues who discussed laser features with us. Finally, absolutely no endorsement by the US Government of any particular laser or laser firm is implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay R. Knutson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, J., Knutson, J.R. (2016). The Impact of Laser Evolution on Modern Fluorescence Spectroscopy. In: Jameson, D. (eds) Perspectives on Fluorescence. Springer Series on Fluorescence, vol 17. Springer, Cham. https://doi.org/10.1007/4243_2016_21

Download citation

Publish with us

Policies and ethics