Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 177))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arp, W.J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant, Cell, and Environment 14:869–76.

    Google Scholar 

  • Aston, A.R. 1984. The effect of doubling atmospheric CO2 on streamflow: A simulation. Journal of Hydrology 67:273–280.

    Article  Google Scholar 

  • Bazzaz, F.A. 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21:167–96.

    Article  Google Scholar 

  • —. 1997. Allocation of resources in plants: State of the science and critical questions. In Plant resource allocation, ed. F.A. Bazzaz and J. Grace, 1–37. San Diego: Academic Press.

    Google Scholar 

  • Bazzaz, F.A., J.S. Coleman, and S.R. Morse. 1990. Growth responses of seven major cooccuring tree species of the northeastern United States to elevated CO2. Canadian Journal of Forest Research 19:1479–84.

    Google Scholar 

  • Beatley, J.C. 1974. Phenological events and their environmental triggers in Mojave-desert ecosystems. Ecology 55:856–63.

    Google Scholar 

  • Beerling, D.J., J.C. McElwain, and C.P. Osborne. 1998. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49:1603–1607.

    Article  Google Scholar 

  • Berry, J., and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31:491–543.

    Article  Google Scholar 

  • Betterini, I., F.P. Vaccari, and F. Miglietta. 1998. Elevated CO2 concetrations and stomatal density: observations from 17 plant species growing in a CO2 spring in Central Italy. Global Change Biology 4:17–22.

    Article  Google Scholar 

  • Bloom, A.J., F.S. Chapin, and H.A. Mooney. 1985. Resource limitation in plants: an economic analogy. Annual Review of Ecology and Systematics 16:363–92.

    Google Scholar 

  • Bond, W.J. and G.F. Midgley. 2000. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology 6:865–70.

    Article  Google Scholar 

  • Bowes, G. 1991. Growth at elevated CO2: photosynthetic responses mediated through RUBISCO: Commissioned review. Plant, Cell, and Environment 14:795–806.

    Google Scholar 

  • —. 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Molecular Biology 44:309–22.

    Article  Google Scholar 

  • Bremer, D.J., J.M. Ham, and C.E. Owensby. 1996. Effect of elevated atmospheric carbon dioxide and opten top chambers on transpiration in a tallgrass prairie. Journal of Environmental Quality 25:691–701.

    Google Scholar 

  • Bunce, J.A. 1996. Short Communication: Growth at elevated carbon dioxide concentration reduces hydraulic conductance in alfalfa and soybean. Global Change Biology 2:155–58.

    Google Scholar 

  • Canadell, J., R.B. Jackson, J.R. Ehleringer, H.A. Mooney, O.E. Sala, and E.-D. Schulze, 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–94.

    Article  Google Scholar 

  • Carlson, R.W., and F.A. Bazzaz. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration, and water use efficiency of plants. In Environmental and climatic impact of coal utilization, ed. J. Singh and A. Deepak, 609–23. New York: Academic Press.

    Google Scholar 

  • Casella, E., J.F. Soussana, and P. Loiseau. 1996. Long-term effects of CO2 enrichment and temperature increase on a temperate grass sward: 1. Productivity and water use. Plant and Soil 182:83–99.

    Article  Google Scholar 

  • Chaves, M., and J. Pereira. 1992. Water-stress, CO2 and climate change. Journal of Experimental Botany 43:1131–39.

    Google Scholar 

  • Clifford, S.C., C.R. Black, J.A. Roberts, I.M. Stronach, P.R. Singleton-Jones, A.D. Mohamed, and S.N. Azamali 1995. The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut (Arachis hypogaea L.). Journal of Experimental Botany 46:847–52.

    Google Scholar 

  • Cody, M.L. 1986. Spacing patterns in Mojave Desert plant communities: Near-neighbor analyses. Journal of Arid Environments 11:199–217.

    Google Scholar 

  • Cowan, I.R., and G.D. Farquhar. 1977. Stomatal function in relation to leaf metabolism and environment. Symposium for the Society of Experimental Biology 31:471–505.

    Google Scholar 

  • Cure, J.D., and B. Acock. 1986. Crop responses to CO2 doubling: A literature survey. Agricultural and Forest Meteorology 38:127–45.

    Article  Google Scholar 

  • Curtis, P.A., and X. Wang. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313.

    Article  Google Scholar 

  • D’Antonio, C.M., and P.M. Vitousek. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63–87.

    Google Scholar 

  • DeLucia, E.H., T.W. Sasek, and B.R. Strain. 1985. Photosynthetic inhibition after longterm exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research 7:175–84.

    Article  Google Scholar 

  • Diemer, M., and C. Körner 1998. Transient enhancement of carbon uptake in an alpine grassland ecosystem under elevated CO2. Arctic and Alpine Research 30:381–87.

    Google Scholar 

  • Dole, K., M. Loik, and L. Sloan. 2003. The relative importance of climate change and the physiological effects of CO2 on freezing tolerance for the future distribution of Yucca brevifolia. Global and Planetary Change 36:137–46.

    Article  Google Scholar 

  • Drake, B.G., G. Peresta, E. Beugeling, and R. Matamala. 1996. Long-term elevated CO2 exposure in a Chesapeake Bay wetland: Ecosystem gas exchange, primary production, and tissue nitrogen. In Carbon dioxide and terrestrial ecosystems, ed. G.W. Koch and H.A. Mooney, 197–214. San Diego: Academic Press.

    Google Scholar 

  • Dukes, J., and C. Field. 2000. Diverse mechanisms for CO2 effects on grassland litter decomposition. Global Change Biology 6:145–54.

    Article  Google Scholar 

  • Dukes, J.S., and H.A. Mooney. 1999. Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14:135–39.

    Article  PubMed  Google Scholar 

  • Easterling, D.R., G.A. Meehl, C. Parmesan, S.A. Changnon, T.R. Karl, and L.O. Mearns. 2000. Climate extremes: Observations, modeling, and impacts. Science 289:2068–74.

    PubMed  Google Scholar 

  • Ehleringer, J.R. 1985. Annuals and perennials of warm deserts. In Physiological ecology of North American plant communities, ed. B.F. Chabot and H.A. Mooney. New York: Chapman and Hall.

    Google Scholar 

  • —. 2001. Productivity of Deserts. In Terrestrial global productivity, ed. J. Roy, B. Saugier, and H.A. Mooney. New York: Academic Press.

    Google Scholar 

  • Ehleringer, J.R., T.E. Cerling, and B.R. Helliker. 1997. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–99.

    Article  Google Scholar 

  • Ellsworth, D.S. 1999. CO2 enrichment in a maturing pine forest: Are CO2 exchange and water status in the canopy affected? Plant, Cell, and Environment 22:461–72.

    Google Scholar 

  • Evans, R., R. Rimer, L. Sperry, and J. Belnap. 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecological Applications 11:1301–10.

    Google Scholar 

  • Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    Article  Google Scholar 

  • Fenner, M. 1985. Seed ecology. New York: Chapman and Hall.

    Google Scholar 

  • Field, C.B., R.B. Jackson, and H.A. Mooney. 1995. Stomatal responses to increased CO2: Implications form the plant to the global scale. Plant, Cell, and Environment 18:1214–26.

    Google Scholar 

  • Field, C.B., C.P. Lund, N.R. Chiariello, and B.E. Mortimer. 1997. CO2 effects on the water budget of grassland microcosm communities. Global Change Biology 3:197–206.

    Article  Google Scholar 

  • Franklin, J.F., F. Swanson, M. Harmon, D. Perry, T. Spies, V. Dale, A. McKee, W. Ferrel, J.E. Means, S.V. Greogory, J. Lattin, T.D. Schowalter, and D. Larson. 1992. Effects of global climate change on forests in northwestern North America. In Global warming and biological diversity, ed. R.L. Peters and T.E. Lovejoy. New Haven: Yale University Press.

    Google Scholar 

  • Fredeen, A.L., and C.B. Field. 1995. Contrasting leaf and ‘ecosystem’ CO2 and H2O exchange in Avena fatua monoculture: Growth at ambient and elevated CO2. Photosynthesis Research 43:263–71.

    Article  Google Scholar 

  • Fredeen, A.L., G.W. Koch, and C.B. Field. 1998. Influence of fertilization and atmospheric CO2 enrichment on ecosystem CO2 and H2O exchanges in single-and multiple-species grassland microcosms. Environmental and Experimental Botany 40:147–57.

    Article  Google Scholar 

  • Ghannoum, O., S. Von Caemmerer, L. Ziska, and J. Conroy. 2000. The growth response of C4 plants to rising atmospheric CO2 partial pressure: A reassessment. Plant, Cell, and Environment 23:931–42.

    Google Scholar 

  • Gifford, R.M. 1988. Direct effects of higher carbon dioxide concentrations on vegetation. Greenhouse: Planning for climate change, ed. G.I. Pearman, 506–19. Melbourne: CSIRO Publications.

    Google Scholar 

  • Grunzweig, J.M., and C. Körner. 2001. Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO2. Oecologia 128:251–62.

    Article  Google Scholar 

  • Ham, J.M., C.E. Owensby, P.I. Coyne, and D.J. Bremer. 1995. Fluxes of CO2 and water vapor from a prairie ecosystem exposed to ambient and elevated atmospheric CO2. Agricultural and Forest Meteorology 77:73–93.

    Article  Google Scholar 

  • Hamerlynck, E., T. Huxman, T. Charlet, and S. Smith. 2002. Effects of elevated CO2 (FACE) on the functional ecology of the drought-deciduous Mojave Desert shrub, Lycium andersonii. Environmental and Experimental Botany 48:93–106.

    Article  Google Scholar 

  • Hamerlynck, E.P., T.E. Huxman, M.E. Loik, and S.D. Smith. 2000a. Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecology 148:183–93.

    Article  Google Scholar 

  • Hamerlynck, E.P., T.E. Huxman, R.S. Nowak, S. Redar, M.E. Loik, D.N. Jordan, S.F. Zitzer, J.S. Coleman, J.R. Seeman, and S.D. Smith. 2000b. Photosythetic responses of Larrea tridentata to a step-increase in atmospheric CO2 at the Nevada Desert FACE facility. Journal of Arid Environments 44:425–36.

    Article  Google Scholar 

  • Hatch, M.D. 1992. C4 Photosynthesis: An unlikely process full of surprises. Plant and Cell Physiology 33:333–342.

    Google Scholar 

  • Hatton, T.J., J. Walker, W.R. Dawes, and F.X. Dunin. 1992. Simulations of hydroecological responses to elevated CO2 at the catchment scale. Australian Journal of Botany 40:679–696.

    Google Scholar 

  • Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, and D. Xiaosu, eds. 2001. IPCC 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Housman, D.C., S.F. Zitzer, T.E. Huxman, and S.D. Smith. 2003. Functional ecology of shrub seedlings after a natural recruitment event at the Nevada Desert FACE Facility. Global Change Biology 9:718–28.

    Article  Google Scholar 

  • Hungate, B.A., P. Dijkstra, D.W. Johnson, C.R. Hinkle, and B.G. Drake. 1999. Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology 5:781–89.

    Article  Google Scholar 

  • Hungate, B.A., C.P. Lund, H.L. Pearson, and F.S. Chapin III. 1997. Elevated CO2 and nutrient addition alter soil N cycling and trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37:89–109.

    Article  Google Scholar 

  • Huxman, K.A. 1999. The importance of root function in the CO2 response to drought. Master of Science. Las Vegas: University of Nevada.

    Google Scholar 

  • Huxman, K.A., S.D. Smith, and D.S. Neuman. 1999. Root hydraulic conductivity of Larrea tridentata and Helianthus annuus under elevated CO2. Plant, Cell, and Environment 22:325–30.

    Google Scholar 

  • Huxman, T., E. Hamerlynck, D. Jordan, K. Salsman, and S. Smith. 1998a. The effects of parental CO2 environment on seed quality and subsequent seedling performance in Bromus rubens. Oecologia 114:202–208.

    Article  Google Scholar 

  • Huxman, T., E. Hamerlynck, M. Loik, and S. Smith. 1998b. Gas exchange and chlorophyll fluorescence responses of three south-western Yucca species to elevated CO2 and high temperature. Plant, Cell, and Environment 21:1275–83.

    Google Scholar 

  • Huxman, T., E. Hamerlynck, and S. Smith. 1999. Reproductive allocation and seed production in Bromus madritensis ssp rubens at elevated atmospheric CO2. Functional Ecology 13:769–77.

    Article  Google Scholar 

  • Huxman, T.E., E.P. Hamerlynck, B.D. Moore, S.D. Smith, D.N. Jordan, S.F. Zitzer, R.S. Nowak, J.S. Coleman, and J.R. Seemann. 1998c. Photosynthetic down-regulation in Larrea tridentata exposed to elevated atmospheric CO2: Interaction with grought under glasshouse and field (FACE) exposure. Plant, Cell, and Environment 21:1153–61.

    Google Scholar 

  • Huxman, T.E., and S.D. Smith. 2001. Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert. Oecologia 128:193–201.

    Article  Google Scholar 

  • Huxman, T.E., B.P. Wilcox, R.L. Scott, K. Snyder, K. Hultine, E. Small, D. Breshears, W. Pockman, and Jackson. Ecohydrological implications of woody plant encroachment. Ecology. In review.

    Google Scholar 

  • Idso, S.B., and A.J. Brazel. 1984. Rising atmospheric carbon dioxide may increase streamflow. Nature 312:51–53.

    Article  Google Scholar 

  • Idso, K.E., and S.B. Idso. 1994. Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: A review of the past 10 years’ research. Agricultural and Forest Meteorology 69:153–202.

    Article  Google Scholar 

  • Jablonski, L., X. Wang, and P. Curtis. 2002. Plant reproduction under elevated CO2 conditions: A meta-analysis of reports on 79 crop and wild species. New Phytologist 156:9–26.

    Article  Google Scholar 

  • Jackson, R., O. Sala, J. Paruelo, and H. Mooney. 1998. Ecosystem water fluxes for two grasslands in elevated CO2: a modeling analysis. Oecologia 113:537–46.

    Article  Google Scholar 

  • Jackson, R.B., J.L. Banner, E.G. Jobbagy, W.T. Pockman, and D.H. Wall. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–26.

    Article  PubMed  Google Scholar 

  • Jackson, R.B., Y. Luo, Z.G. Cardon, O.E. Sala, C.B. Field, and H.A. Mooney. 1995. Photosynthesis, growth, and density for the dominant species in a CO2-enriched grassland. Journal of Biogeography 22:1225–29.

    Google Scholar 

  • Jackson, R.B., O.E. Sala, C.B. Field, and H.A. Mooney 1994. CO2 alters water use, carbon gain, and yield in a natural grassland. Oecologia 98:257–62.

    Article  Google Scholar 

  • Ketellapper, H. 1963. Stomatal Physiology. Annual Review of Plant Physiology and Plant Molecular Biology 14:249–270.

    Google Scholar 

  • Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal 75:779–88.

    Google Scholar 

  • Kimball, B.A., and J.R. Mauney. 1993. Response of cotton to varying carbon dioxide, irrigation, and nitrogen: Yield and growth. Agronomy Journal 85:706–12.

    Google Scholar 

  • Kimball, B.A., P.J.J. Pinter, R.L. Garcia, R.L. Lamorte, G.W. Wall, D.J. Hunsaker, G. Wechsung, F. Wechsung, and T. Kartschall. 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biology 1:429–43.

    Google Scholar 

  • Knapp, A.K., E.P. Hamerlynck, J.M. Ham, and C.E. Owensby 1996. Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form. Vegetatio 125:31–41.

    Article  Google Scholar 

  • Knapp, A.K., E.P. Hamerlynck, and C.E. Owensby. 1993. Photosynthetic and water relations responses to elevated CO2 in the C4 grass Andropogon gerardii. International Journal of Plant Sciences 154:459–66.

    Article  Google Scholar 

  • Körner, C. 2000. Biosphere responses to CO2 enrichment. Ecological Applications 10:1590–1619.

    Google Scholar 

  • Körner, C., and F. Miglietta. 1994. Long term effects of naturally elevated CO2 on Mediterranean grassland and forest trees. Oecologia 99:343–51.

    Article  Google Scholar 

  • Linsbauer, K. 1917. Beitrage zur Kenntnis der Spaltoffnungsbewegung. Flora 9:100–143.

    Google Scholar 

  • Lockwood, J.G. 1999. Is potential evapotranspiration and its relationship with actual evapotranspiration sensitive to elevated atmospheric CO2 levels? Climatic Change 41:193–212.

    Article  Google Scholar 

  • Loik, M., T. Huxman, E. Hamerlynck, and S. Smith. 2000. Low temperature tolerance and cold acclimation for seedlings of three Mojave Desert Yucca species exposed to elevated CO2. Journal of Arid Environments 46:43–56.

    Article  Google Scholar 

  • Loik, M.E., and J. Harte. 1996. High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulations. Oecologia 108:224–31.

    Google Scholar 

  • Long, S.P. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Opinion. Plant, Cell, and Environment 14:729–40.

    Google Scholar 

  • Lund, C.P. 2001. Ecosystem carbon and water budgets under elevated atmospheric carbon dioxide concentration in two California grasslands. Stanford: Stanford University.

    Google Scholar 

  • Lund, C.P., W.J. Riley, L.L. Pierce, and C.B. Field. 1999. The effects of chamber pressurization on soil-surface CO2 flux and implications for NEE measurements under elevated CO2. Global Change Biology 5:269–82.

    Article  Google Scholar 

  • Mayeux, H.S., H.B. Johnson, and H.W. Polley. 1994. Potential interactions between global change and intermountain annual grasslands. In Ecology and management of annual rangelands, ed. S.B. Monsen and S.G. Kitchen. United States Forest Service General Technical Report INT-GTR-313. Ogden, Utah: Intermountain Research Station.

    Google Scholar 

  • McGuire, A.D., S. Sitch, J.S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F. Joos, J. Kaplan, D.W. Kicklighter, and R.A. Meier. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15:183–206.

    Article  Google Scholar 

  • Melillo, J.M., D.W. Kicklighter, A.D. McGuire, B. Moore, III, C.J. Vorosmarty, and A.L. Grace. 1993. Global climate change and terrestrial net primary production. Nature 363:234–40.

    Article  Google Scholar 

  • Mooney, H.A., J. Canadell, F.S. Chapin, III, J. Ehleringer, C. Körner, R. McMurtrie, W.J. Parton, L. Pitelka, and E.-D. Schulze. 1999. Ecosystem physiology responses to global change. In The terrestrial biosphere and global change: Implications for natural and managed ecosystems, B.H. Walker, W.L. Steffen, J. Canadell, and J.S.I. Ingram, 141–89. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mooney, H.A., B.G. Drake, R.J. Luxmoore, W.C. Oechel, and L.F. Pitelka. 1991. Predicting ecosystem responses to elevated CO2 concentrations. Bioscience 41:96–104.

    Google Scholar 

  • Morgan, J.A., D.R. LeCain, A.R. Mosier, and D.G. Milchunas. 2001. Elevated CO2 enhances water relations and productivity and affects gas-exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biology 7:451–66.

    Article  Google Scholar 

  • Morison, J.I.L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell, and Environment 8:467–74.

    Google Scholar 

  • Mulroy, T.W., and P.W. Rundel. 1977. Annual plants: Adaptations to desert environments. Bioscience 27:109–14.

    Google Scholar 

  • Naumburg, E., D. Housman, T. Huxman, T. Charlet, M. Loik, and S. Smith. 2003. Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Global Change Biology 9:276–85.

    Article  Google Scholar 

  • Neilson, R.P., and R.J. Drapek. 1998. Potentially complex biosphere responses to global warming. Global Change Biology 4:505–22.

    Article  Google Scholar 

  • Nie, D., H. He, G. Mo, M.B. Kirkham, and E.T. Kanemasu 1992. Canopy photosynthesis and evapotranspiration of rangeland plants under doubled carbon dioxide in closedtop chambers. Agricultural and Forest Meteorology 61:205–17.

    Article  Google Scholar 

  • Nijs, I., R. Ferris, H. Blum, G. Hendry, and I. Impens. 1997. Stomatal regulation in a changing climate: a field study using Free Air Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE). Plant Cell and Environment 20:1041–50.

    Article  Google Scholar 

  • Niklaus, P.A., D. Spinnler, and C. Körner. 1998. Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia 117:201–208.

    Article  Google Scholar 

  • Nowak, R., L. DeFalco, C. Wilcox, D. Jordan, J. Coleman, J. Seemann, and S. Smith. 2001. Leaf conductance decreased under free-air CO2 enrichment (FACE) for three perennials in the Nevada desert. New Phytologist 150:449–58.

    Article  Google Scholar 

  • Oechel, W.C., S. Cowles, N. Grulke, S.J. Hastings, B. Lawrence, T. Prudhomme, G. Riechers, B. Strain, D. Tissue, and G. Vourlitis. 1994. Transient nature of CO2 fertilization in Arctic tundra. Nature 371:500–503.

    Article  Google Scholar 

  • Oechel, W.C., S.J. Hastings, G.L. Vourlitis, M.A. Jenkins, and C.L. Hinkson. 1995. Direct effects of elevated CO2 in Chaparral and Mediterranean-Type ecosystems. In Global Change and Mediterranean-Type Ecosystems, ed. J.L. Moreno and W.C. Oechel, 58–75. New York: Springer-Verlag.

    Google Scholar 

  • Oren, R., D.S. Ellsworth, K.H. Johnsen, N. Phillips, B.E. Ewers, C. Maier, K.V.R. Schafer, H. McCarthy, G. Hendrey, S.G. McNulty, and G.G. Katul. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–72.

    PubMed  Google Scholar 

  • Owensby, C.E., P.I. Coyne, J.M. Ham, L.M. Auen, and A.K. Knapp. 1993. Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecological Applications 3:644–53.

    Google Scholar 

  • Owensby, C.E., J.M. Ham, A.K. Knapp, and L.M. Auen. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biology 5:497–506.

    Article  Google Scholar 

  • Pataki, D., T. Huxman, D. Jordan, S. Zitzer, J. Coleman, S. Smith, R. Nowak, and J. Seemann. 2000. Water use of two Mojave Desert shrubs under elevated CO2. Global Change Biology 6:889–97.

    Article  Google Scholar 

  • Peters, R.L., and T.E. Lovejoy, eds. 1992. Global warming and biological diversity. New Haven: Yale University Press.

    Google Scholar 

  • Polley, H., H. Johnson, and J. Derner. 2002. Soil-and plant-water dynamics in a C3/C4 grassland exposed to a subambient to superambient CO2 gradient. Global Change Biology 8:1118–29.

    Article  Google Scholar 

  • Polley, H., H. Johnson, and C. Tischler. 2003. Woody invasion of grasslands: Evidence that CO2 enrichment indirectly promotes establishment of Prosopis glandulosa. Plant Ecology 164:85–94.

    Article  Google Scholar 

  • Polley, H., H. Mayeux, H. Johnson, and C. Tischler. 1997. Viewpoint: Atmospheric CO2, soil water, and shrub/grass ratios on rangelands. Journal of Range Management 50:278–84.

    Google Scholar 

  • Poorter, H., M. and Navas. 2003. Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytologist 157:175–98.

    Article  Google Scholar 

  • Poorter, H., C. Roumet, and B.D. Campbell. 1996. Interspecific variation in the growth response of plants to elevated CO2: A search for functional types. In Carbon, dioxide, populations, and communities, ed. C. Körner and F.A. Bazzaz, 375–412. San Diego: Academic Press.

    Google Scholar 

  • Reich, P.B., J. Knop, D. Tilman, J. Craine, D. Ellsworth, M. Tjoelker, T. Lee, D. Wedin, S. Naeem, D. Bahauddin, G. Hendrey, S. Jose, K. Wrage, J. Goth, and W. Bengston. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–12.

    Article  PubMed  Google Scholar 

  • Reynolds, J.F., D.W. Hilbert, and P.R. Kemp 1993. Scaling ecophysiology from the plant to the ecosystem: A conceptual framework. In Scaling physiological processes: Leaf to globe, ed. J.R. Ehleringer and C.B. Field, 127–40. San Diego: Academic Press.

    Google Scholar 

  • Reynolds, J.F., R.A. Viginia, and W.H. Schlesinger. 1997. Defining functional types for models of desertification. In Plant functional types: Their relevance to ecosystem properties and global change, ed. T.M. Smith, H.H. Shugart, and F.I. Woodward III. Cambridge: Cambridge University Press.

    Google Scholar 

  • Roden, J.S., and M.C. Ball. 1996. The effect of elevated [CO2] on growth and photosynthesis of two Eucalyptus species exposed to high temperatures and water deficits. Plant Physiology 111:909–19.

    PubMed  Google Scholar 

  • Sage, R.F. 1994. Acclimation of photosynthesis to increasing atmoshperic CO2: The gas enchange perspective. Photosynthesis Research 39:351–68.

    Article  Google Scholar 

  • Sage, R.F., and T.D. Sharkey. 1987. The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiology 84:658–64.

    Google Scholar 

  • Sage, R.F., T.D. Sharkey, and J.R. Seeman. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiology 89:590–96.

    Google Scholar 

  • Sage, R.W. 1996. Modication of fire disturbance by elevated CO2. In Carbon, dioxide, populations, and communities, ed. C. Körner and F.A. Bazzaz, 231–49. New York: Academic Press.

    Google Scholar 

  • Saxe, H.D.S.E., and J. Heath. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139:395–436.

    Article  Google Scholar 

  • Schapendonk, A.H.C.M., P. Dijkstra, J. Groenwald, C.S. Pot, and S.C. van de Geijn. 1997. Carbon balance and water use efficiency of frequently cut Lolium perenne L. swards at elevated carbon dioxide. Global Change Biology 3:207–17.

    Article  Google Scholar 

  • Schimel, D., J. Melillo, H. Tian, A.D. McGuire, D. Kicklighter, T. Kittel, N. Rosenbloom, S. Running, P. Thornton, D. Ojima, W. Parton, R. Kelly, M. Sykes, R. Neilson, and B. Rizzo. 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006.

    Article  PubMed  Google Scholar 

  • Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change. New York: Academic Press.

    Google Scholar 

  • Sharkey, T.D. 1985. Photosynthesis in intact leaves of C3 plants: Physics, physiology, and rate limitations. Botanical Review 51:53–105.

    Google Scholar 

  • Shaw, M.R., E.S. Zavaleta, N.R. Chiariello, E.E. Cleland, H.A. Mooney, and C.B. Field. 2002. Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–90.

    Article  PubMed  Google Scholar 

  • Smith, S.D., and T.E. Huxman. 2001. Elevated atmospheric CO2 and deserts: Will increasing CO2 alter deserts and desertification processes? Arid Lands Newsletter, no. 49.

    Google Scholar 

  • Smith, S.D., T.E. Huxman, S.F. Zitzer, T.N. Charlet, D.C. Housman, J.S. Coleman, L.K. Fenstermaker, J.R. Seemann, and R.S. Nowak. 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82.

    Article  PubMed  Google Scholar 

  • Smith, S.D., D.N. Jordan, and E.P. Hamerlynck. 1999. Effects of elevated CO2 and temperature stress on ecosystem processes. In Carbon dioxide and environmental stress, ed. Y. Luo and H.A. Mooney. New York: Academic Press.

    Google Scholar 

  • Smith, S.D., R.K. Monson, and J.E. Anderson. 1997. Physiological ecology of North American desert plants. Berlin: Springer-Verlag.

    Google Scholar 

  • Smith, S.D., and R.S. Nowak. 1990. Physiological ecology of plants in the Intermountain lowlands. In Plant biology of the basin and range, ed. C.B. Osmond, L.F. Pitelka, and G. Hidy, 181–241. Berlin: Springer-Verlag.

    Google Scholar 

  • Smith, S.D., B.R. Strain, and T.D. Sharkey. 1987. Effects of CO2 enrichment on four Great Basin grasses. Functional Ecology 1:139–43.

    Google Scholar 

  • Stocker, R., P.W. Leadley, and C. Körner. 1997. Carbon and water fluxes in a calcareous grassland under elevated CO2. Functional Ecology 11:222–31.

    Article  Google Scholar 

  • Strain, B.R. 1992. Field measurements of CO2 enhancement and change in natural vegetation. Water, Air, and Soil Pollution 64:45–60.

    Google Scholar 

  • Strain, B.R., and F.A. Bazzaz. 1983. Terrestrial plant communities. In CO2and plants: The response of plants to rising levels of carbon dioxide, ed. E. Lemon, 177–222. Washington, D.C.: American Association for the Advancement of Science.

    Google Scholar 

  • Stulen, I., and J. Denhertog. 1993. Root-growth and functioning under atmospheric CO2 enrichment. Vegetatio 104:99–115.

    Article  Google Scholar 

  • Taub, D.R., J.R. Seemann, and J.S. Coleman. 2000. Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant, Cell, and Environment 23:649–56.

    Google Scholar 

  • Tilman, D., J. Knops, D. Wedin, P. Reich, M. Richie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302.

    Article  Google Scholar 

  • Tissue, D.T., and W.C. Oechel. 1987. Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68:401–10.

    Google Scholar 

  • Tissue, D.T., R.B. Thomas, and B.R. Strain. 1993. Long-term effects of elevated CO2 and nutrients on photosynthesis and Rubisco in loblolly pine seedlings. Plant Cell and Environment 16:859–65.

    Google Scholar 

  • Torn, M.S., and J.S. Fried. 1992. Predicting the impacts of global warming on wildland fire. Climatic Change 21:257–74.

    Article  Google Scholar 

  • Trabaud, L.V., N.L. Christensen, and A.M. Gill. 1993. Historical biogeography of fire in temperate and Mediterranean ecosystems. In Fire in the environment, ed. P.J. Crutzen and J.G. Goldammer. Chichester, England: Wiley.

    Google Scholar 

  • Tyree, M., and J. Alexander. 1993. Plant water relations and the effects of elevated CO2: A review and suggestion for future research. Vegetatio 104:47–62.

    Article  Google Scholar 

  • Volk, M., P.A. Niklaus, and C. Körner. 2000. Soil moisture effects determine CO2 responses of grassland species. Oecologia 125:380–88.

    Article  Google Scholar 

  • Wagner, D. 1996. Scenarios of extreme temperature events. Climate Change 33:385–407.

    Article  Google Scholar 

  • Wand, S., G. Midgley, M. Jones, and P. Curtis. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions. Global Change Biology 5:723–41.

    Article  Google Scholar 

  • Ward, J.K., D.T. Tissue, B.R. Thomas, and B.R. Strain. 1999. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology 5:857–67.

    Article  Google Scholar 

  • Watson, R.T., H. Rhodhe, H. Oeschger, and U. Siegenthaler. 1990. Greenhouse gases and aerosols. In Climate change: The IPCC scientific assessment, ed. J.T. Houghton, G.J. Jenkins, and J.J. Ephraums, 1–40. Cambridge: Cambridge University Press.

    Google Scholar 

  • Webb, A.A.R., M.R. McAinsh, T.A. Mansfield, and A.M. Hetherington. 1996. Carbon induces increases in guard cell cytosolic free calcium. The Plant Journal 9:297–304.

    Article  Google Scholar 

  • Weltzin, J., and G. McPherson. 2000. Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology 81:1902–13.

    Google Scholar 

  • Weltzin, J.F., M.E. Loik, S. Schwinning, D.G. Williams, P. Fay, B. Haddad, J. Harte, T.E. Huxman, A.K. Knapp, G. Lin, W.T. Pockman, M.R. Shaw, E. Small, M.D. Smith, S.D. Smith, D.T. Tissue, and J.C. Zak. In Press. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience.

    Google Scholar 

  • Woodward, F.I., G.B. Thompson, and I.F. McKee. 1991. The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities, and ecosystems. Annals of Botany 67:23–38.

    Google Scholar 

  • Woodward, F.I., and B.G. Williams. 1987. Climate and plant distribution at global and local scales. Vegetatio 69:189–97.

    Article  Google Scholar 

  • Ziska, L. 2003. Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. Journal of Experimental Botany 54:395–404.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rebecca Shaw, M., Huxman, T.E., Lund, C.P. (2005). Modern and Future Semi-Arid and Arid Ecosystems. In: Baldwin, I., et al. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Ecological Studies, vol 177. Springer, New York, NY. https://doi.org/10.1007/0-387-27048-5_19

Download citation

Publish with us

Policies and ethics