Skip to main content
Log in

Root growth and functioning under atmospheric CO2 enrichment

  • Ecophysiological and Ecosystem Responses: Effects of CO2 Enrichment on Growth and Production
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions during the experiment, the growth phase of the plant, and its morphological characteristics. Under non-limiting conditions of water and nutrients for growth, dry matter partitioning to the root is not changed by CO2 enrichment. The increase in root/shoot ratio, frequently observed under limiting conditions of water and/or nutrients, enables the plant to explore a greater soil volume, and hence acquire more water and nutrients. However, more data on changes in dry matter allocation within the root due to atmospheric CO2 are needed. It is concluded that nitrogen fixation is favored by CO2 enrichment since nodule mass is increased, concomitant with an increase in root length. The papers available so far on the influence of CO2 enrichment on mycorrhizal functioning suggest that carbon allocation to the roots might be increased, but also here more experiments are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LAR:

leaf area ratio

LWR:

leaf weight ratio

SWR:

stem weight ratio

RGR:

relative growth rate

R/S:

root/shoot

RWR:

root weight ratio

References

  • Acock, B. & Pasternak, D. 1986. Effects of CO2 concentration on composition, anatomy, and morphology of plants. In: Enoch, H. Z. & Kimball, B. A. (eds), Carbon Dioxide Enrichment of Greenhouse Crops. II. Physiology, yield and economics. pp. 41–53. CRC Press, Inc., Boca Raton.

    Google Scholar 

  • AllenJr, L. H., Vu, J. C. V., Valle, R. R., Boote, K. J. & Jones, P. H. 1988. Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop. Sci. 28: 84–94.

    Google Scholar 

  • Bazzaz, F. A. 1990. The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst. 21: 167–196.

    Google Scholar 

  • Bhattacharya, N. C., Biswas, P. K., Bhattacharya, S., Sionit, N. & Strain, B. R. 1985. Growth and yield response of sweet potato to atmospheric CO2 enrichment. Crop Science 25: 975–981.

    Google Scholar 

  • Billings, W. D., Luken, J. O., Mortenson, D. A. & Peterson, K. M. 1982. Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53: 7–11.

    Google Scholar 

  • Billings, W. D., Luken, J. O., Mortenson, D. A. & Peterson, K. M. 1983. Increasing atmospheric carbon dioxide: possible effects on arctic tundra. Oecologia 58: 286–289.

    Google Scholar 

  • Billings, W. D., Peterson, K. M., Luken, J. O. & Mortenson, D. A. 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29.

    Google Scholar 

  • Boot, R. G. A. 1989. The significance of size and morphology of root systems. In: Lambers, H, Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and Consequences of Variation in Growth rate and Productivity. pp 299–311. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Brouwer, R. 1962. Distribution of dry matter in the plant. Neth. J. Agric. Sci. 10: 361–376.

    Google Scholar 

  • Brouwer, R. 1983. Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31: 335–348.

    Google Scholar 

  • Bunce, J. A. 1990. Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann. Bot. 65: 637–642.

    Google Scholar 

  • Campagna, M. A. & Margolis, H. A. 1989. Influence of short-term atmospheric CO2 enrichment on growth, allocation patterns, and biochemistry of black spruce seedlings at different stages of development. Can. J. For. Res. 19: 773–782.

    Google Scholar 

  • Chapin, F. S.III 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11: 1007–1010.

    Google Scholar 

  • Clough, J. M., Peet, M. M. & Kramer, P. J. 1981. Effects of high atmospheric CO2 and sink size on rates of photosynthesis of a soybean cultivar. Plant Physiol. 67: 1007–1010.

    Google Scholar 

  • Cure, J. D. & Acock, B. 1986. Crop responses to carbon dioxide doubling: a literature survey. Agric. For. Meteorol. 38: 127–145.

    Google Scholar 

  • Cure, J. D., Israel, D. W. & RuftyJr, T. W. 1988. Nitrogen stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. Crop Sci. 28: 671–677.

    Google Scholar 

  • Del, Castillo, D., Acock, B., Reddy, V. R. & Acock, M. C. 1989. Elongation and branching of roots of soybean plants in a carbon dioxide-enriched aerial environment. Agron. J. 81: 692–695.

    Google Scholar 

  • Den, Hertog, J. & Stulen, I. 1990. The effects of an elevated atmospheric CO2 concentration on dry matter and nitrogen allocation. In: Goudriaan, J., Van, Keulen, H. & Van, Laar, H. H. (eds). The Greenhouse Effect and Primary Productivity in European Agro-ecosystems. pp. 27–30. Pudoc, Wageningen.

    Google Scholar 

  • Den, Hertog, J., Stulen, I. & Lambers, H. 1993. Assimilation and allocation of carbon in Plantago major as affected by atmospheric CO2 levels: a case study. Vegetatio: 104/105: 369–378.

    Google Scholar 

  • De Visser, R. 1984. Interactions between energy and nitrogen metabolism inPisum sativum. Thesis, Groningen.

  • De Willigen, P. & Van Noordwijk, M. 1987. Roots, plant production and nutrient use efficiency. Thesis, Wageningen.

  • Enoch, H. Z. 1990. Crop responses to aerial carbon dioxide. Acta horticulturae 268: 17–33.

    Google Scholar 

  • Finn, G. A. & Brun, W. A. 1982. Effect of atmospheric CO2 enrichment on growth, nonstructural carbohydrate content, and root nodule activity in soybean. Plant Physiol. 69: 327–331.

    Google Scholar 

  • Ford, M. A. & Thorne, G. N. 1967. Effect of CO2 concentration on growth of sugar-beet, barley, kale and maize. Ann. Bot. 31: 629–694.

    Google Scholar 

  • Gastal, F. & Saugier, B. 1989. Relationships between nitrogen uptake and carbon assimilation in. Plant Cell Environm. 12: 407–418.

    Google Scholar 

  • Gifford, R. M. 1979. Growth and yield of CO2-enriched wheat under water-limited conditions. Aust. J. Plant Physiol. 6: 367–378.

    Google Scholar 

  • Gifford, R. M., Lambers, H & Morison, J. I. L. 1985. Respiration of crop species under CO2 enrichment. Physiol. Plant 63: 351–356.

    Google Scholar 

  • Hardy, R. W. F. & Havelka, U. D. 1975. Photosynthate as a major factor limiting nitrogen fixation by field grown legumes with emphasis on soybeans. In: Nutman, P. S. (ed.), Symbiotic Nitrogen Fixation in Plants. pp 421–439. International Biology Program Series, Vol. 7. Cambridge University Press, London.

    Google Scholar 

  • Hocking, P. J. & Meyer, C. P. 1985. Responses of Noogoora burr (Xanthium occidentale Bertol.) to nitrogen supply and carbon dioxide enrichment. Ann. Bot. 55: 835–844.

    Google Scholar 

  • Hughes, A. P. & Cockshull, K. E. 1969. Effects of carbon dioxide concentration on the growth ofCallistephus chinensis cultivar Johannistag. 33: 351–365.

    Google Scholar 

  • Hurd, R. G. 1968. Effects of CO2-enrichment on the growth of young tomato plants in low light. Ann. Bot. 32: 531–542.

    Google Scholar 

  • Jolliffe, P. A. & Ehret, D. L. 1985. Growth of bean plants at elevated carbon dioxide concentrations. Can. J. Bot. 63: 2121–2125.

    Google Scholar 

  • Kaushal, P., Guehl, J. M. & Aussenac, G. 1989. Differential growth response to atmospheric carbon dioxide enrichment in seedlings ofCedrus atlantica andPinus nigra ssp.Laricio var.Corsicana. Can. J. For. Res. 19: 1351–1358.

    Google Scholar 

  • Kimball, B. A. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J. 75: 779–789.

    Google Scholar 

  • Kimball, B. A. 1986. CO2 stimulation of growth and yield under environmental restraints. In: Enoch, H. Z. & Kimball, B. A. (eds), Carbon Dioxide Enrichment of Greenhouse Crops. Vol II. Physiology, yield, and economics. pp. 53–67. CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Konings, H. 1989. Physiological and morphological differences between plants with a high NAR or a high LAR as related to environmental conditions. In: Lambers, H, Cambridge, M. L., Konings, H. & Pons, T. L. (eds.), Causes and Consequences of Variation in Growth Rate and Productivity. pp 101–123. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Lambers, H. 1987. Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In: Gregory, P. J., Lake, J. V. Rose, D. A. (eds), Root Development and Functions. pp. 124–146. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lambers, H. & Posthumus, F. 1980. The effect of light intensity and relative humidity on growth rate and root respiration ofPlantago lanceolata andZea mays. J. Exp. Bot. 31: 1621–1630.

    Google Scholar 

  • Larigauderie, L., Hilbert, D. W. & Oechel, W. C. 1988. Effect of CO2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass,Bromus mollis. Oecologia 77: 544–549.

    Google Scholar 

  • Luxmoore, R. J., O'Neill, E. G., Ells, J. M. & Rogers, J. M. 1986. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric CO2. J. Environ. Qual. 15: 244–251.

    Google Scholar 

  • Masterson, C. L. & Sherwood, M. T. 1978. Some effects of increased atmospheric carbon dioxide on white clover (Trifolium repens) and pea (Pisum sativum). Plant and Soil 49: 421–426.

    Google Scholar 

  • Morison, J. I. L. & Gifford, R. M. 1984. Plant growth and water use with a limited water supply in high CO2 concentrations. II. Plant dry weight, partitioning and water use efficiency. Aust. J. Plant Physiol. 11: 361–374.

    Google Scholar 

  • Mousseau, M. & Enoch, H. Z. 1989. Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.). Plant Cell Environm. 12: 927–934.

    Google Scholar 

  • Nijs, I., Impens, I. & Behaeghe, T. 1989. Leaf and canopy responses ofLolium perenne to long-term elevated atmospheric carbon-dioxide concentration. Planta 177: 312–320.

    Google Scholar 

  • Norby, R. J. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment in the atmosphere. Physiol. Plant. 71: 77–82.

    Google Scholar 

  • Norby, R. J., Luxmoore, R. J., O'Neill, E. G. & Weller, D. G. 1984. Plant responses to elevated atmospheric CO2 with emphasis on belowground processes. ORNL/TM-9426. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Norby, R. J., O'Neill, E. G., Hood, W. G. & Luxmoore, R. J. 1987. Carbon allocation, root exudation and mycorrhizal colonization. Tree Physiol. 3: 203–210.

    Google Scholar 

  • Norby, R. J., O'Neill, E. G. & Luxmoore, R. J. 1986a. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition ofQuercus alba seedlings in nutrient-poor soil. Plant Physiol. 82: 83–89.

    Google Scholar 

  • Norby, R. J., Pastor, J. & Melillo, J. M. 1986b. Carbon-nitrogen interactions in CO2-enriched white oak: physiological and long-term perspectives. Tree Physiol. 2: 233–241.

    Google Scholar 

  • Oberbauer, S. F., Sionit, N., Hastings, S. J. & Oechel, W. C. 1986. Effects of CO2 enrichment on growth, photosynthesis, and nutrient concentration of Alaskan tundra plant species. Can. J. Bot. 64: 2993–2998.

    Google Scholar 

  • Overdieck, O., Reid, C. H. & Strain, B. R. 1988. The effects of preindustrial and future CO2 concentrations on growth, dry matter production and the C/N relationship in plants at low nutrient supply:Vigna unguiculata (cowpea),Abelmoschus esculentus (okra) andRaphanus sativus (radish). Angew. Botanik 62: 119–134.

    Google Scholar 

  • Paez, A., Hellmers, H. & Strain, B. R. 1980. CO2 effects on apical dominance inPisum sativum. Physiol. Plant. 50: 43–46.

    Google Scholar 

  • Patterson, D. T. & Flint, E. P. 1982. Interacting effects of CO2 and nutrient concentrations. Weed Science 30: 389–394.

    Google Scholar 

  • Phillips, D. A., Newell, K. D., Hassell, S. A. & Felling, C. E. 1976. The effect of CO2 enrichment on root nodule development and symbiotic N2 reduction inPisum sativum L. Amer. J. Bot. 63: 356–362.

    Google Scholar 

  • Poorter, H., Pot, S. & Lambers, H. 1988. The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and respiration ofPlantago major. Physiol. Plant. 73: 553–559.

    Google Scholar 

  • Reddy, V. R., Acock, B. & Acock, M. C. 1989. Seasonal carbon and nitrogen accumulation in relation to net carbon dioxide exchange in a carbon dioxide-enriched soybean canopy. Agron. J. 81: 78–83.

    Google Scholar 

  • Reynolds, J. F. & Thornley, J. H. M. 1982. A shoot:root partitioning model. Ann. Bot. 49: 585–597.

    Google Scholar 

  • Richardson, S. D. 1953. Studies on root growth inAcer saccharinum L. I. The relation between root growth and photosynthesis. Proc. K. Ned. Acad. Wet. C56: 185–193.

    Google Scholar 

  • Rogers, H. H., Cure, J. D., Thomas, J. F. & Smith, J. M. 1984. Influence of elevated CO2 on growth of soybean plants. Crop Sci. 24: 361–367.

    Google Scholar 

  • Rowland-Bamford, A. J., Allen, L. H.Jr., Baker, J. T. & Boote, K. J. 1990. Carbon dioxide effects on carbohydrate status and partitioning in rice. J. exp. Bot. 41: 1601–1608.

    Google Scholar 

  • Sasek, T. W. & Strain, B. R. 1988. Effects of carbon dioxide enrichment on the growth and morphology of Kudzu (Pueraria lobata). Weed Science 36: 28–36.

    Google Scholar 

  • Shivashankar, K. & Vlassak, K. 1978. Influence of straw and CO2 on N2-fixation and yield of field-grown soybeans. Plant and Soil 49: 259–266.

    Google Scholar 

  • Sionit, N. 1983. Response of soybean to two levels of mineral nutrition in CO2-enriched atmosphere. Crop Sci. 23: 329–334.

    Google Scholar 

  • Sionit, N., Strain, B. R. & Hellmers, H. 1981a. Effects of different concentrations of atmospheric CO2 on growth and yield components of wheat. J. Agric. Sci. 79: 335–339.

    Google Scholar 

  • Sionit, N., Hellmers, H. & Strain, B. R. 1980. Growth and yield of wheat under CO2 enrichment and water stress. Crop Sci. 20: 687–690.

    Google Scholar 

  • Sionit, N., Hellmers, H. & Strain, B. R. 1982. Interaction of atmospheric CO2 enrichment and irradiance on plant growth. Agron. J. 74: 721–725.

    Google Scholar 

  • Sionit, N., Mortensen, D. A., Strain, B. R. & Hellmers, H. 1981b. Growth response of wheat to CO2 enrichment and different levels of mineral nutrition. Agron. J. 73: 1023–1027.

    Google Scholar 

  • Sionit, N., Strain, B. R., Hellmers, H., Riechers, G. H. & Jaeger, C. H. 1985. Long-term atmospheric CO2 enrichment affects the growth and development ofLiquidambar styraciflua andPinus taeda seedlings. Can. J. For. Res. 15: 468–471.

    Google Scholar 

  • Sritharan, R. & Lenz, F. 1990. The effect of CO2 concentration and water supply on photosynthesis, dry matter production and nitrate concentrations of kohlrabi (Brassica oleracea var.gongylodes L.). Acta Horticulturae 286: 43–55.

    Google Scholar 

  • Stulen, I., Den, Hertog, J. & Jansen, C. M. 1992. The influence of atmospheric CO2 enrichment on allocation patterns of carbon and nitrogen in plants from natural vegetations. In: Govindjee, Abrol, Y. P. & Mohanty, P. (ed), Photosynthesis and Plant Productivity.in press Oxford QIBP Publishing Co. PVT. LTD, New Delhi.

    Google Scholar 

  • Thornley, J. H. M. 1972. A balanced quantitative model for root:shoot ratios in vegetative plants. Ann. Bot. 36: 431–441.

    Google Scholar 

  • Tinus, R. W. 1972. CO2 enriched atmosphere speeds growth of Ponderosa pine and blue spruce seedlings. Tree Plant. Notes 23: 12–15.

    Google Scholar 

  • Tognoni, F., Halevy, A. H. & Wittwer, S. H. 1967. Growth of bean and tomato plants as affected by root absorbed growth substances and atmospheric carbon dioxide. Planta 72: 43–52.

    Google Scholar 

  • Tolley, L. C. & Strain, B. R. 1984. Effects of CO2 enrichment and water stress on growth ofLiquidambar styraciflua andPinus taeda seedlings. Can. J. Bot. 62: 2135–2139.

    Google Scholar 

  • Tolley, L. C. & Strain, B. R. 1985. Effects of CO2 enrichment and water stress on gas exchange ofLiquidambar styraciflua andPinus taeda seedlings grown under different irradiance levels. Oecologia 65: 166–172.

    Google Scholar 

  • Van der, Werf, A., Kooijman, A, Welschen, R & Lambers, H. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots ofCarex diandra andCarex acutiformis. Physiol. Plant. 72: 483–491.

    Google Scholar 

  • Vessey, J. K., Henry, L. T. & RaperJr, C. D. 1990. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth. Crop Sci. 30: 287–294.

    Google Scholar 

  • Whipps, J. M. 1985. Effect of CO2 concentration on growth, carbon distribution and loss of carbon from the roots of maize. J. Exp. Bot. 36: 644–651.

    Google Scholar 

  • Whipps, J. M. 1987. Carbon loss from the roots of tomato and pea seedlings grown in soil. Plant and Soil 103: 95–100.

    Google Scholar 

  • Wilson, J. B. 1988. A review of evidence on the control of shoot: root ratio, in relation to models. Ann. Bot. 61: 433–449.

    Google Scholar 

  • Wittwer, S. H. 1986. Worldwide status and history of CO2 enrichment — an overview. In: Enoch, H. Z. & Kimball, B. A. (eds), Carbon Dioxide Enrichment of Greenhouse Crops. Vol I. Status and CO2 source. pp. 3–16. CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44: 68–74.

    Google Scholar 

  • Wong, S. C. 1990. Elevated atmospheric partial pressure of CO2 and plant growth. II Non-structural carbohydrate content in cotton plants and its effect on growth. Photosynthesis Research 23: 171–180.

    Google Scholar 

  • Yelle, S., Gosselin, A. & Trudel, M. J. 1987. Effect of atmospheric CO2 concentration and root-zone temperature on growth, mineral nutrition, and nitrate reductase activity of greenhouse tomato. J. Amer. Soc. Hort. Sci. 112: 1036–1040.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stulen, I., den Hertog, J. Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104, 99–115 (1993). https://doi.org/10.1007/BF00048147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048147

Keywords

Navigation