Skip to main content

Protein Aggregation, Ion Channel Formation, and Membrane Damage

  • Chapter
Protein Misfolding, Aggregation, and Conformational Diseases

Part of the book series: Protein Reviews ((PRON,volume 4))

  • 1573 Accesses

Abstract

A plethora of clinical syndromes are characterized by the deposition of amorphous, Congo red staining material known as “amyloid.” These protein folding diseases include Alzheimer’s, Parkinson’s, type II diabetes mellitus, rheumatoid arthritis, and “mad cow” disease. Amyloid-forming peptides readily adapt beta-sheet structure and can spontaneously aggregate into extended fibrils despite having no primary sequence homology. All amyloid peptides appear to interact strongly with lipid membranes, assemble into oligomers, and form ion-permeable channels. These channels are large, heterogeneous, nonselective, and irreversible. They are inhibited by Congo red and blocked by Zn+2. The leakage pathway induced by these channels could be responsible for the cellular pathology of amyloidoses, including membrane depolarization, mitochondrial dysfunction, inhibition of long-term potential (LTP), and cytotoxicity. We suggest that channel formation underlies amyloid disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov, A.Y., Canevari, L., and Duchen, M.R. (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24:565–575.

    Article  PubMed  CAS  Google Scholar 

  • Anguiano, M., Nowak, R.J., and Lansbury, P.T., Jr. (2002). Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41(38):11338–11343.

    Article  PubMed  CAS  Google Scholar 

  • Arispe, N. (2004). Architecture of the Alzheimer’s A beta P ion channel pore. J. Membr. Biol. 197:33–48.

    Article  PubMed  CAS  Google Scholar 

  • Arispe, N., and Doh, M. (2002). Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1-40) and (1-42) peptides. FASEB J. 16:1526–1536.

    Article  PubMed  CAS  Google Scholar 

  • Arispe, N., Rojas, E., and Pollard, H.B. (1993a). Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and alminum. Proc. Natl. Acad. Sci. USA 90(1):567–571.

    Article  PubMed  CAS  Google Scholar 

  • Arispe, N., Pollard, H.B., and Rojas, E. (1993b). Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc. Natl. Acad. Sci. USA 90:10573–10577.

    Article  PubMed  CAS  Google Scholar 

  • Arispe, N., Pollard, H.B., and Rojas, E. (1996). Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc. Natl. Acad. Sci. USA 93:1710–1715.

    Article  PubMed  CAS  Google Scholar 

  • Bahadi, R., Farrelly, P.V., Kenna, B.L., Curtain, C.C., Masters, C.L., Cappai, R., Barnham, K.J., and Kourie, J.I. (2003a). Cu2+-induced modification of the kinetics of A beta(1-42) channels. Am. J. Physiol. 285:C873–C880.

    CAS  Google Scholar 

  • Bahadi, R., Farrelly, P.V., Kenna, B.L., Kourie, J.I., Tagliavini, F., Forloni. G., and Salmona, M. (2003b). Channels formed with a mutant prion protein PrP(82–146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am. J. Physiol 285:C862–C872.

    CAS  Google Scholar 

  • Bucciantini, M., Calloni, G., Chiti, F., Formigli, L, Nosi, D., Dobson, C.M., and Stefani, M. (2004). Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J. Biol. Chem. 279:31374–31382.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A.E., Janson, J., Soeller, W.C., and Butler P.C. (2003). Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52:2304–2314.

    Article  PubMed  CAS  Google Scholar 

  • Caughey, B., and Lansbury, P.T., Jr. (2003). Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26:267–298.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q.S., Kagan, B.L., Hirakura, Y., and Xie, C.W. (2000). Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. J. Neurosci. Res. 60:65–72.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N., and Rosenbusch, J.P. (1992). Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733.

    Article  PubMed  CAS  Google Scholar 

  • De Gioia, L., Selvaggini, C., Ghibaudi, E., Diomede, L., Bugiani, O., Forloni, G., Tagliavini, F., and Salmona, M. (1994). Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. J. Biol. Chem. 269:7859–7862.

    PubMed  Google Scholar 

  • Durell, S.R., Guy, H.R., Arispe, N., Rojas, E., and Pollard, H.B. (1994). Theoretical models of the ion channel structure of amyloid beta-protein. Biophys. J. 67:2137–2145.

    PubMed  CAS  Google Scholar 

  • Farrelly, P.V., Kenna, B.L., Laohachai, K.L., Bahadi, R., Salmona, M., Forloni, G. and Kourie, J.I. (2003). Quinacrine blocks PrP (106–126)-formed channels. J. Neurosci. Res. 74:934–941.

    Article  PubMed  CAS  Google Scholar 

  • Forloni, G., Chiesa, R., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, F., and Angeretti, N. (1993). Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25–35. Neuroreport 4:523–526.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, S.P., Suh, Y.H., Chong, Y.H., and Djamgoz, M.G. (1996). Membrane currents induced in Xenopus oocytes by the C-terminal fragment of the beta-amyloid precursor protein. J. Neurochem. 66(5):2034–2040.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, K., Abe, Y., and Akaike, N., (1994). Amyloid beta protein-induced irreversible current in rat cortical neurones. Neuroreport 5:2016–2018.

    Article  PubMed  CAS  Google Scholar 

  • Harroun, T.A., Bradshaw, J.P., and Ashley, R.H. (2001). Inhibitors can arrest the membrane activity of human islet amyloid polypeptide independently of amyloid formation. FEBS Lett. 507:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R.S., Mastrianni, J.A., Scott, M.R., DeFea, K.A., Tremblay, P., Torchia, M., DeArmond, S.J., Prusiner, S.B., and Lingappa, V.R. (1998). A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834.

    Article  PubMed  CAS  Google Scholar 

  • Hirakura, Y., and Kagan, B.L. (2001). Pore formation by beta-2-microglobulin: a mechanism for the pathogenesis of dialysis associated amyloidosis. Amyloid 8:94–100.

    PubMed  CAS  Google Scholar 

  • Hirakura, Y., Lin, M.C., and Kagan, B.L. (1999). Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo Red. J. Neurosci. Res. 57:458–466.

    Article  PubMed  CAS  Google Scholar 

  • Hirakura, Y., Azimov, R., Azimova, R., and Kagan, B.L. (2000). Polyglutamine-induced ion channels: a possible mechanism for the neurotoxicity of Huntington and other CAG repeat diseases. J. Neurosci. Res. 60:490–494.

    Article  PubMed  CAS  Google Scholar 

  • Hirakura, Y., Azimova, R., Azimov, R., and Kagan, B.L. (2001). Ion channels with different selectivity formed by transthyretin. Biophys. J. 80–120.

    Google Scholar 

  • Hirakura, Y., Carreras, I., Sipe, J.D., and Kagan B.L. (2002). Channel formation by serum amyloid A: a potential mechanism for amyloid pathogenesis and host defense. Amyloid 9:13–23.

    PubMed  CAS  Google Scholar 

  • Hsia, A.Y., Masliah, E., McConlogue, L., Yu, G.Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R.C., Nicoll, R.A., and Mucke, L. (1999). Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA 96:3228–3233.

    Article  PubMed  CAS  Google Scholar 

  • Janson, J., Ashley, R.H., Harrison, D., McIntyre, S., and Butler, P.C. (1999). The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498.

    Article  PubMed  CAS  Google Scholar 

  • Janson, J., Laedtke, T., Parisi, J.E., O’Brien P., Petersen R.C., and Butler, P.C. (2004). Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481.

    Article  PubMed  CAS  Google Scholar 

  • Kagan, B.L., Selsted, M.E., Ganz, T., and Lehrer, R.I. (1990). Antimicrobial defeusin peptides form voltage dependent ion permeable channels in planar lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 87:210–214.

    Article  PubMed  CAS  Google Scholar 

  • Kagan, B.L., Azimova, R.K. (2003). Ion channels formed by a fragment of alpha-synuclein (NAC) in lipid membranes, Biophs. J. 84(2):53a.

    Google Scholar 

  • Kawahara, M., Arispe, N., Kuroda, Y., and Rojas, E. (1997). Alzheimer’s disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys. J. 73:67–75.

    PubMed  CAS  Google Scholar 

  • Kawahara, M., Kuroda, Y., Arispe, N., and Rojas, E. (2000). Alzheimer’s beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J. Biol. Chem. 275:14077–14083.

    Article  PubMed  CAS  Google Scholar 

  • Kim H.J., Suh, Y.H., Lee, M.H., and Ryu, P.D., (1999). Cation selective channels formed by a C-terminal fragment of beta-amyloid precursor protein. Neuroreport 14,(10)7:1427–1431.

    Google Scholar 

  • Kim, H.S., Lee, J.H., Lee, J.P., Kim, E.M., Chang, K.A., Park, C.H., Jeong, S.J., Wittendorp, M.C., Seo, J.H., Choi, S. H., and Suh, Y.H. (2002). Amyloid beta peptide induces cytochrome c release from isolated mitochondria. Neuroreport 13:1989–1993.

    Article  PubMed  CAS  Google Scholar 

  • Knauer, M.F., Soreghan, B., Burdick, D., Kosmoski, J., and Glabe, C.G. (1992). Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc. Natl. Acad. Sci. USA 89:7437–7441.

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I. (1999). Characterization of a C-type natriuretic peptide (CNP-39)-formed cation-selective channel from platypus (Ornithorhynchus anatinus) venom. J. Physiol. 518 (Pt 2):359–369.

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., and Culverson. A. (2000). Prion peptide fragment PrP[106–126] forms distinct cation channel types. J. Neurosci. Res. 62:120–133.

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Henry, C.L., and Farrelly, P. (2001). Diversity of amyloid beta protein fragment [1-40]-formed channels. Cell. Mol. Neurobiol. 21:255–284.

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Culverson, A.L., Farrelly, P.V., Henry, C.L., and Laohachai, K.N. (2002). Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: implications for therapeutic strategies against amyloidosis. Cell Biochem. Biophys. 36:191–207.

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Kenna, B.L., Tew, D., Jobling, M.F., Curtain, C.C., Masters, C.L., Barnham, K.J., and Cappai, R. (2003). Copper modulation of ion channels of PrP[106–126] mutant prion peptide fragments. J. Membr. Biol. 193:35–45.

    Article  PubMed  CAS  Google Scholar 

  • Larson, J., Lynch, G., Games, D., and Seubert, P. (1999). Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res. 840:23–35.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel, H.A., Petre, B.M., Wall, J., Simon, M., Nowak, R.J., Walz, T., and Lansbury, P.T., Jr. (2002). Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322:1089–1102.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel, H.A., Hartley, D.M., Petre, B.M., Wall, J.S., Simon, M.N., Walz, T., and Lansbury, P.T., Jr. (2003). Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J. Mol. Biol. 332:795–808.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.H., and Li, X.J. (2004). Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet. 20:146–154.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M.C., and Kagan, B.L. (2002). Electrophysiologic properties of channels induced by Abeta25-35 in planar lipid bilayers. Peptides 23:1215–1228.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M.C., Mirzabekov, T., and Kagan, B.L. (1997). Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem. 272:44–47.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H., Zhu, Y.J., and Lal, R. (1999). Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 38:11189–11196.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo, A., Razzaboni, B., Weir, G.C., and Yankner, B.A. (1994). Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368:756–760.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M.P., Barger S.W., Cheng B., Lieberburg I., Smith-Swintosky V.L., and Rydel R.E. (1993). beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci. 16:409–414.

    Article  PubMed  CAS  Google Scholar 

  • McKeith, I., Mintzer, J., Aarsland, D., Burn, D., Chiu, H., Cohen-Mansfield, J., Dickson, D., Dubois, B., Duda, J.E., Feldman, H., Gauthier, S., Halliday, G., Lawlor, B., Lippa, C., Lopez, O.L., Carlos Machado, J., O’Brien, J., Playfer, J., and Reid, W. (2004). Dementia with Lewy bodies. Lancet Neurol. 3:19–28.

    Article  PubMed  Google Scholar 

  • Merlini G., and Bellotti V. (2003). Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349:583–596.

    Article  PubMed  CAS  Google Scholar 

  • Micelli, S., Meleleo, D., Picciarelli, V., and Gallucci, E. (2004). Effect of sterols on beta-amyloid peptide (AbetaP 1-40) channel formation and their properties in planar lipid membranes. Biophys. J. 86:2231–2237.

    PubMed  CAS  Google Scholar 

  • Mirzabekov, T., Lin, M.C., Yuan, W.L., Marshall, P.J., Carman, M., Tomaselli, K., Lieberburg, I., and Kagan, B.L. (1994). Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem. Biophys. Res. Commun. 202:1142–1148.

    Article  PubMed  CAS  Google Scholar 

  • Mirzabekov, T.A., Lin, M.C., and Kagan, B.L. (1996). Pore formation by the cytotoxic islet amyloid peptide amylin. J. Biol. Chem. 271:1988–1992.

    Article  PubMed  CAS  Google Scholar 

  • Moechars, D., Lorent, K., and Van Leuven, F. (1999). Premature death in transgenic mice that overexpress a mutant amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience 91:819–830.

    Article  PubMed  CAS  Google Scholar 

  • Monoi, H., Futaki, S., Kugimiya, S., Minakata, H., and Yoshihara, K. (2000). Poly-L-glutamine forms cation channels: relevance to the pathogenesis of the polyglutamine diseases [see comments]. Biophys. J. 78:2892–2899.

    PubMed  CAS  Google Scholar 

  • Ng, A.W., Wasan, K.M., and Lopez-Berestein, G. (2003). Development of liposomal polyene antibiotics: an historical perspective. J. Pharm. Pharm. Sci. 6:67–83.

    PubMed  CAS  Google Scholar 

  • Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R.J., and Cohen, F.E. (1993). Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90:10962–10966.

    Article  PubMed  CAS  Google Scholar 

  • Panov, A.V., Gutekunst, C.A., Leavitt, B.R., Hayden, M.R., Burke, J.R., Strittmatter, W.J., and Greenamyre, J.T. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5:731–736.

    PubMed  CAS  Google Scholar 

  • Parks, J.K., Smith, T.S., Trimmer, P.A., Bennett, J.P., Jr., and Parker, W.D., Jr. (2001). Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J. Neurochem. 76:1050–1056.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, R., Tweten, R.K., and Johnson, A.E. (2004). Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat. Struct. Mol. Biol. Epub 2004 July 04.

    Google Scholar 

  • Reed, J.C. (2000). Mechanisms of apoptosis. Am. J. Pathol. 157:1415–1430.

    PubMed  CAS  Google Scholar 

  • Relini, A., Torrassa, S., Rolandi, R., Gliozzi, A., Rosano, C., Canale, C., Bolognesi, M., Plakoutsi, G., Bucciantini, M., Chiti, F., and Stefani, M. (2004). Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J. Mol. Biol. 338:943–957.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, C.M., Sola, S., Silva, R., and Brites, D. (2000). Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization. Mol. Med. 6(11):936–946.

    Google Scholar 

  • Ryou, C., Legname, G., Peretz, D., Craig, J.C., Baldwin, M.A., and Prusiner, S.B. (2003). Differential inhibition of prion propagation by enantiomers of quinacrine. Lab. Invest. 83(6):837–843.

    PubMed  CAS  Google Scholar 

  • Sandberg, M.K., Wallen, P., Wikstrom, M.A., and Kristensson, K. (2004). Scrapie-infected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (Ca(v) 2.2) which is ameliorated by quinacrine treatment. Neurobiol. Dis. 15:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, K.L., Butler, L., and Ingram, V.M. (1997). Aggregates of a beta-amyloid peptide are required to induce calcium currents in neuron-like human teratocarcinoma cells: relation to Alzheimer’s disease. Brain Res. 744:7–14.

    Article  PubMed  CAS  Google Scholar 

  • Schein, S.J., Kagan, B.L., and Finkelstein, A. (1978). Colicin K acts by forming voltage-dependent channels in phospholipids bilayer membranes. Nature 276:159–163.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (2002). Alzheimer’s disease is a synaptic failure. Science 298:789–791.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, M.A., and Schneider, C.R. (1993). Amyloid beta peptides act directly on single neurons. Neurosci. Lett. 150(2):133–136.

    Article  PubMed  CAS  Google Scholar 

  • Sipe, J.D. (2000). Serum amyloid A: from fibril to function. Current status. Amyloid 7:10–12.

    PubMed  CAS  Google Scholar 

  • Sipe, J.D., and Cohen, A.S. (2000). Review: history of the amyloid fibril. J. Struct. Biol. 130:88–98.

    Article  PubMed  CAS  Google Scholar 

  • Sokolov, Y., Mirzabekov T., Martin, D.W., Lehrer, R.I., and Kagan, B.L. (1999). Membrane channel formation by antimicrobial protegrins. Biochim. Biophys. Acta 1420:23–29.

    Article  PubMed  CAS  Google Scholar 

  • Song, L., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J.E. (1996). Structure of staphylococcal alphahemolysin, a heptameric transmembrane pore. Science 274:1859–1866.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4(1): 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Stipani, V., Galluci, E., Micelli, S., Picciarelli, V., and Benz, R. (2001). Channel formation by salmon and human calcitonin in black lipid membranes. Biophys. J. 81(6):3332–3338.

    Article  PubMed  CAS  Google Scholar 

  • Volles, M.J., and Lansbury, P.T., Jr. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.

    Article  PubMed  CAS  Google Scholar 

  • Westermark, P., and Wilander, E. (1978). The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia 15:417–421.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y.J., Lin H., and Lal, R. (2000). Fresh and nonfibrillar amyloid beta protein(1-40) induces rapid cellular degeneration in aged human fibroblasts: evidence for AbetaP-channel-mediated cellular toxicity. FASEB J. 14:1244–1254.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kagan, B.L. (2006). Protein Aggregation, Ion Channel Formation, and Membrane Damage. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25919-8_11

Download citation

Publish with us

Policies and ethics