Skip to main content
Log in

Copper Modulation of Ion Channels of PrP[106–126] Mutant Prion Peptide Fragments

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We have shown previously that the protease-resistant and neurotoxic prion peptide fragment PrP[106–126] of human PrP incorporates into lipid bilayer membranes to form heterogeneous ion channels, one of which is a Cu2+-sensitive fast cation channel. To investigate the role of PrP[106–126]’s hydrophobic core, AGAAAAGA, on its ability to form ion channels and their regulation with Cu2+, we used the lipid-bilayer technique to examine membrane currents induced as a result of PrP[106–126] (AA/SS) and PrP[106–126] (VVAA/SSSS) interaction with lipid membranes and channel formation. Channel analysis of the mutant (VVAAA/SSS), which has a reduced hydrophobicity due to substitution of hydrophobic residues with the hydrophilic serine residue, showed a significant change in channel activity, which reflects a decrease in the β-sheet structure, as shown by CD spectroscopy. One of the channels formed by the PrP[106–126] mutant has fast kinetics with three modes: burst, open and spike. The biophysical properties of this channel are similar to those of channels formed with other aggregation-prone amyloids, indicating their ability to form the common β sheet-based channel structure. The current-voltage (I–V) relationship of the fast cation channel, which had a reversal potential, E rev , between -40 and -10 mV, close to the equilibrium potential for K+ (E K = - 35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (gmax) was 58 pS at positive potentials between 0 and 140 mV. Cu2+ shifted the kinetics of the channel from being in the open and “burst” states to the spike mode. Cu2+ reduced the probability of the channel being open (P o ) and the mean open time (To) and increased the channel’s opening frequency (Fo) and the mean closed time (Tc) at a membrane potential (Vm) between + 20 and +140 mV. The fact that Cu2+ induced changes in the kinetics of this channel with no changes in its conductance, indicates that Cu2+ binds at the mouth of the channel via a fast channel block mechanism. The Cu2+-induced changes in the kinetic parameters of this channel suggest that the hydrophobic core is not a ligand Cu2+ site, and they are in agreement with the suggestion that the Cu2+-binding site is located at M109 and H111 of this prion fragment. Although the data indicate that the hydrophobic core sequence plays a role in PrP[106–126] channel formation, it is not a binding site for Cu2+. We suggest that the role of the hydrophobic region in modulating PrP toxicity is to influence PrP assembly into neurotoxic channel conformations. Such conformations may underlie toxicity observed in prion diseases. We further suggest that the conversions of the normal cellular isoform of prion protein (PrPc) to abnormal scrapie isoform (PrPSc) and intermediates represent conversions to protease-resistant neurotoxic channel conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

amyloid β-peptide

CD:

circular dichroism spectroscopy

PrP:

prion protein

PrPc :

normal cellular form of prion proteins

TSE:

transmissible spongiform encephalopathy

References

  • Arispe, N., Pollard, H.B., Rojas, E. 1996. Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc. Natl. Acad. Sci. USA 93:1710–1715

    Article  PubMed  CAS  Google Scholar 

  • Barrow, C.J., Yasuda, A., Kenny, P.T., Zagorski, M.G. 1992. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J. Mol. Biol. 225:1075–1093

    Article  PubMed  CAS  Google Scholar 

  • Barrow, C.J., Zagorski, M.G. 1991. Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science 253:79–182

    Article  Google Scholar 

  • Barrow, P.A., Holmgren, C.D., Tapper, A.J., Jefferys, J.G. 1999. Intrinsic physiological and morphological properties of principal cells of the hippocampus and neocortex in hamsters infected with scrapie. Neurobiol. Dis. 6:406–423

    Article  PubMed  CAS  Google Scholar 

  • Barry, P.H. 1994. JPCalc, a Software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Meth. 51:107–116

    Article  CAS  Google Scholar 

  • Brown, D.R., Clive, C., Haswell, S.J. 2001. Antioxidant activity related to copper binding of native prion protein. J. Neurochem. 76:69–76

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.R., Herms, J., Kretzschmar, H.A. 1994. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5:2057–2060

    PubMed  CAS  Google Scholar 

  • Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M., Stefani, M. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  • Bush, A.I. 2000. Metals and neuroscience. Curr. Opin. Chem. Biol. 4:184–191

    Article  PubMed  CAS  Google Scholar 

  • Chapron, Y., Peyrin, J.M., Crouzy, S., Jaegly, A., Dormont, D. 2000. Theoretical analysis of the implication of PrP in neuronal death during transmissible subacute spongiform encephalopathies: hypothesis of a PrP oligomeric channel. J. Theor. Biol. 204:103–111

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun, D., Hawkes, A.G. 1983. Fitting and statistical analysis of single-channel recording. In: Single Channel Recording. B. Sakmann and E. Neher, editors. pp. 135–175. Plenum, New-York

    Google Scholar 

  • Durell, S.R., Guy, H.R., Arispe, N., Rojas, E., Pollard, H.B. 1994. Theoretical models of the ion channel structure of amyloid beta-protein. Biophys. J. 67:2137–2145

    Article  PubMed  CAS  Google Scholar 

  • Florio, T., Grimaldi, M., Scorziello, A., Salmona, M., Bugiani, O., Tagliavini, F., Forloni, G., Schettini, G. 1996. Intracellular calcium rise through L-type calcium channels, as molecular mechanism for the prion protein fragment 106–126-induced astroglial proliferation. Biochem. Biophys. Res. Commun. 228:397–405

    Article  PubMed  CAS  Google Scholar 

  • Forloni, G., Del Bo, R., Angeretti, N., Smiroldo, S., Gabellini, N., Vantini, G. 1993. Nerve growth factor does not influence the expression of beta amyloid precursor protein mRNA in rat brain: in vivo and in vitro studies. Brain. Res. 620:292–296

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y., Fujioka, H., Mishra, R.S., Li, R., Singh, N. 2002. Prion peptide 106–126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP. J. Biol. Chem. 277:2275–2286

    Article  PubMed  CAS  Google Scholar 

  • Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C.L., Beyreuther, K. 1992. Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease beta A4 peptides. J. Mol. Biol. 228:460–473

    Article  PubMed  CAS  Google Scholar 

  • Hirakura, Y., Yiu, W.W., Yamamoto, A., Kagan, B.L. 2000. Amyloid peptide channels: blockade by zinc and inhibition by Congo red (amyloid channel block). Amyloids 3:194–199

    Article  Google Scholar 

  • Jobling, M.F., Huang, X., Stewart, L.R., Barnham, K.J., Curtain, C.C., Volitakis, I., Perugini, M., White, A.R., Cherny, R.A., Masters, C.L., Barrow, C.J., Collins, S.J., Bush, A.I., Cappai, R. 2001. Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP 106–126. Biochem. 40:8073–8084

    Article  CAS  Google Scholar 

  • Jobling, M.F., Stewart, L.R., White, A.R., McLean, C., Friedhuber, A., Maher, F., Beyreuther, K., Masters, C.L., Barrow, C.J., Collins, S.J., Cappai, R. 1999. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126. J. Neurochem. 73:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Kawahara, M., Kuroda, Y., Arispe, N., Rojas, E. 2000. Alzheimer’s disease-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in hypothalamic GnRH neuronal cell line. J. Biol. Chem. 275:14077–14083

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I. 1996. Vagaries of artificial bilayers and gating modes of the SCl channel from the sarcoplasmic reticulum muscle. J. Membr. Sci. 116:221–227

    Article  CAS  Google Scholar 

  • Kourie, J.I. 1999. Calcium dependence of C-type natriuretic peptide-formed fast K+ channel. Am. J. Physiol. 277:C43-C50

    PubMed  CAS  Google Scholar 

  • Kourie, J.I. 2001. Mechanisms of prion-induced modification in membrane transport systems. Chemico-Biological Interactions 138:1–26

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Culverson, A. 2000. Prion peptide fragment PrP[106–126] forms distinct cation channel types. J. Neurosci. Res. 62:120–133

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Farrelly, P.V., Henry, C.L. 2001a. Channel activity of deamidated isoforms of prion protein fragment 106–126 in planar lipid bilayers. J. Neurosci. Res. 66:214–220

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Henry, C.L. 2001. Protein aggregation and deposition: Implications for ion channel formation and membrane damage. Crot. Med. Res. 42:358–373

    Google Scholar 

  • Kourie, J.L., Henry, C.L. 2002. Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: The role of dangerous unchaperoned molecules. Clin. Exp. Pharmacol. Physiol. 29:741–753

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Henry, C.L., Farrelly, P.V. 2001b. Diversity of amyloid β protein fragment [l–40]-formed channels. Cell. Mol. Neurobiol. 21:255–284

    Article  PubMed  CAS  Google Scholar 

  • Kourie, J.I., Laver, D.R., Junankar, P.R., Gage, P.W., Dulhunty, A.F. 1996. Characteristic of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophys. J. 70:202–221

    Article  PubMed  CAS  Google Scholar 

  • Lashuel, H.A., Hartley, D., Petre, B.M., Walz, T., Lansbury P.T. Jr. 2002. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291

    Article  PubMed  CAS  Google Scholar 

  • Lin, M.-C, Mirzabekov, T., Kagan, B.L. 1997. Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem. 272:44–47

    Article  PubMed  CAS  Google Scholar 

  • Miller, C., Racker, E. 1976. Ca+ +-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membrane Biol. 30:283–300

    Article  CAS  Google Scholar 

  • Mobashery, N., Nielsen, C., Andersen, O.S. 1997. The conformational preference of gramicidin channels is a function of lipid bilayer thickness. FEBS Lett. 412:15–20

    Article  PubMed  CAS  Google Scholar 

  • Pan, K.-M., Baldwin, M., Nguyen, J., Gasset, M., Serban A., Groth D., Melhorn I., Huang Z., Flettenck R.J., Cohen F.E., Prusiner S.B. 1993. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90:10962–10966

    Article  PubMed  CAS  Google Scholar 

  • Patlak, J.B. 1993. Measuring kinetics of complex single ion channel data using mean-variance histograms. Biophys. J. 65:29–42

    Article  PubMed  CAS  Google Scholar 

  • Pike, C.J., Walencewicz-Wasserman, A.J., Kosmoski, J., Cribbs, D.H., Glabe, C.G., Cotman, C.W. 1995. Structure-activity analyses of β-amyloid peptides: contributions of the β25–35 region to aggregation and neurotoxicity. J. Neurochem. 64:253–265

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S.B., Scott, M.R., DeArmond, S.J., Cohen, F.E. 1998. Prion protein biology. Cell 93:337–348

    Article  PubMed  CAS  Google Scholar 

  • Singh, N., Gu, Y., Bose, S., Kalepu, S., Mishra, R.S., Verghese, S. 2002. Prion peptide 106–126 as a model for prion replication and neurotoxicity. Front. Biosci. 7:60–71

    Article  Google Scholar 

  • Stewart, L.R., White, A.R., Jobling, M.F., Needham, B.E., Maher, F., Thyer, J., Beyreuther, K., Masters, C.L., Collins, S.J., Cappai, R. 2001. Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106–126. J. Neurosci. 65:565–572

    Article  CAS  Google Scholar 

  • Tagliavini, F., Forloni, G., Bugiani, O., Salmona, M. 2001. Studies on peptide fragments of prion proteins. Adv. Protein Chem. 57:171–201

    Article  PubMed  CAS  Google Scholar 

  • Warwicker, J. 1999. Modelling charge interactions in prion protein: predictions for pathogenesis. FEBS Lett. 450:144–148

    Article  PubMed  CAS  Google Scholar 

  • White, A.R., Guirguis, R., Brazier, M.W., Jobling, M.F., Hill, A.F., Beyreuther, K., Barrow, C.J., Masters, C.L., Collins, S.J., Cappai, R. 2001. Sublethal concentrations of prion peptide PrP106–126 or the amyloid beta peptide of Alzheimer’s disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol. Dis. 8:299–316

    Article  PubMed  CAS  Google Scholar 

  • Wong, B.-S., Pan, T., Liu, T., Li, R., Petersen, R.B., Jones, I.M., Gambetti, P., Brown, D.R., Sy, M.-S. 2000. Prion disease: A loss of antioxidant function. Biochem. Biophys. Res. Commun. 275:249–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Kourie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kourie, J.I., Kenna, B.L., Tew, D. et al. Copper Modulation of Ion Channels of PrP[106–126] Mutant Prion Peptide Fragments. J. Membrain Biol. 193, 35–45 (2003). https://doi.org/10.1007/s00232-002-2005-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-002-2005-5

Key words

Navigation