Skip to main content

Painlevé Equations and Associated Polynomials

  • Chapter
Theory and Applications of Special Functions

Part of the book series: Developments in Mathematics ((DEVM,volume 13))

  • 1564 Accesses

Abstract

In this paper we are concerned with rational solutions and associated polynomials for the second, third and fourth Painlevé equations. These rational solutions are expressible as in terms of special polynomials. The structure of the roots of these polynomials is studied and it is shown that these have a highly regular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablowitz, M. J. and Clarkson, P. A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of Lecture Notes in Mathematics. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Ablowitz, M. J. and Satsuma, J. (1978). Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys., 19:2180–2186.

    Article  MathSciNet  MATH  Google Scholar 

  • Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions. Dover, New York, tenth edition.

    MATH  Google Scholar 

  • Adler, M. and Moser, J. (1978). On a class of polynomials associated with the Korteweg-de Vries equation. Commun. Math. Phys., 61:1–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Adler, V. E. (1994). Nonlinear chains and Painlevé equations. Physica, D73:335–351.

    Google Scholar 

  • Airault, H. (1979). Rational solutions of Painlevé equations. Stud. Appl. Math., 61:31–53.

    MATH  MathSciNet  Google Scholar 

  • Airault, H., McKean, H. P., and Moser, J. (1977). Rational and elliptic solutions of the KdV equation and related many-body problems. Commun. Pure Appl. Math., 30:95–148.

    MathSciNet  MATH  Google Scholar 

  • Albrecht, D. W., Mansfield, E. L., and Milne, A. E. (1996). Algorithms for special integrals of ordinary differential equations. J. Phys. A: Math. Gen., 29:973–991.

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews, G., Askey, R., and Roy, R. (1999). Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bassom, A. P., Clarkson, P. A., and Hicks, A. C. (1995). Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math., 95:1–71.

    MathSciNet  MATH  Google Scholar 

  • Bureau, F. (1992). Differential equations with fixed critical points. In Painlevé transcendents (Sainte-Adèle, PQ, 1990), volume 278 of NATO Adv. Sci. Inst. Ser. B Phys., pages 103–123. Plenum, New York.

    Google Scholar 

  • Charles, P. J. (2002). Painlevé analysis and the study of continuous and discrete Painlevé equations. PhD thesis, Institute of Mathematics and Statistics, University of Kent, UK.

    Google Scholar 

  • Clarkson, P. A. and Kruskal, M. D. (1989). New similarity solutions of the Boussinesq equation. J. Math. Phys., 30:2201–2213.

    Article  MathSciNet  MATH  Google Scholar 

  • Clarkson, P. A. and Mansfield, E. L. (2003). The second Painlevé equation, its hierarchy and associated special polynomials. Nonlinearity, 16:R1–R26.

    Article  MathSciNet  MATH  Google Scholar 

  • Flaschka, H. and Newell, A. C. (1980). Monodromy-and spectrum preserving deformations. I. Commun. Math. Phys., 76:65–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A. S. and Ablowitz, M. J. (1982). On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys., 23:2033–2042.

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A. S., Muğan, U., and Ablowitz, M. J. (1988). A method of linearisation for Painlevé equations: Painlevé IV, V. Physica, D30:247–283.

    Google Scholar 

  • Fokas, A. S. and Yortsos, Y. C. (1981). The transformation properties of the sixth painlevé equation and one-parameter families of solutions. Lett. Nuovo Cim., 30:539–544.

    MathSciNet  Google Scholar 

  • Fukutani, S., Okamoto, K., and Umemura, H. (2000). Special polynomials and the Hirota bilinear relations of the second and fourth Painlevé equations. Nagoya Math. J., 159:179–200.

    MathSciNet  MATH  Google Scholar 

  • Gambier, B. (1910). Sur les équations différentielles du second ordre et du premeir degre dont l'intégrale générale est à points critiques fixés. Acta Math., 33:1–55.

    MathSciNet  Google Scholar 

  • Gromak, V. I. (1973). The solutions of Painlevé's third equation. Diff. Eqns., 9:1599–1600.

    MathSciNet  Google Scholar 

  • Gromak, V. I. (1975). Theory of Painlevé's equation. Diff. Eqns., 11:285–287.

    MathSciNet  Google Scholar 

  • Gromak, V. I. (1976). Solutions of Painlevé's fifth equation. Diff. Eqns., 12:519–521.

    MathSciNet  Google Scholar 

  • Gromak, V. I. (1978a). Algebraic solutions of the third Painlevé equation. Dokl. Akad. Nauk BSSR, 23:499–502.

    MathSciNet  Google Scholar 

  • Gromak, V. I. (1978b). One-parameter systems of solutions of Painlevé's equations. Diff. Eqns., 14:1510–1513.

    MATH  MathSciNet  Google Scholar 

  • Gromak, V. I. (1987). Theory of the fourth painlevé equation. Diff. Eqns., 23:506–513.

    MATH  MathSciNet  Google Scholar 

  • Gromak, V. I. (1999). Bäcklund transformations of Painlevé equations and their applications. In Conte, R., editor, The Painleve Property, One Century Later, CRM Series in Mathematical Physics, pages 687–734. Springer, New York.

    Google Scholar 

  • Gromak, V. I. (2001). Bäcklund transformations of the higher order Painlevé equations. In Coley, A., Levi, D., Milson, R., Rogers, C., and Winternitz, P., editors, Bäcklund and Darboux transformations. The geometry of solitons (Halifax, NS, 1999), volume 29 of CRM Proc. Lecture Notes, pages 3–28. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • Gromak, V. I., Laine, I., and Shimomura, S. (2002). Painlevé Differential Equations in the Complex Plane, volume 28 of Studies in Mathematics. de Gruyter, Berlin, New York.

    Google Scholar 

  • Gromak, V. I. and Lukashevich, N. A. (1982). Special classes of solutions of Painlevé's equations. Diff. Eqns., 18:317–326.

    MathSciNet  MATH  Google Scholar 

  • Iwasaki, K., Kajiwara, K., and Nakamura, T. (2002). Generating function associated with the rational solutions of the Painlevé II equation. J. Phys. A: Math. Gen., 35:L207–L211.

    Article  MathSciNet  MATH  Google Scholar 

  • Iwasaki, K., Kimura, H., Shimomura, S., and Yoshida, M. (1991). From Gauss to Painlevé: a Modern Theory of Special Functions, volume 16 of Aspects of Mathematics E. Viewag, Braunschweig, Germany.

    MATH  Google Scholar 

  • Jimbo, M. and Miwa, T. (1983). Solitons and infinite dimensional Lie algebras. Publ. RIMS, Kyoto Univ., 19:943–1001.

    Article  MathSciNet  MATH  Google Scholar 

  • Kajiwara, K. and Masuda, T. (1999a). A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations. J. Phys. A: Math. Gen., 32:3763–3778.

    Article  MathSciNet  MATH  Google Scholar 

  • Kajiwara, K. and Masuda, T. (1999b). On the Umemura polynomials for the Painlevé III equation. Phys. Lett., A260:462–467.

    MathSciNet  Google Scholar 

  • Kajiwara, K. and Ohta, Y. (1996). Determinantal structure of the rational solutions for the painlevé II equation. J. Math. Phys., 37:4393–4704.

    Article  MathSciNet  Google Scholar 

  • Kajiwara, K. and Ohta, Y. (1998). Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A: Math. Gen., 31:2431–2446.

    Article  MathSciNet  MATH  Google Scholar 

  • Kametaka, Y. (1983). On poles of the rational solution of the Toda equation of Painlevé-II type. Proc. Japan Acad. Ser. A Math. Sci., 59:358–360.

    Article  MATH  MathSciNet  Google Scholar 

  • Kametaka, Y. (1985). On the irreducibility conjecture based on computer calculation for Yablonskiĭ-Vorobev polynomials which give a rational solution of the Toda equation of Painlevé-II type. Japan J. Appl. Math., 2:241–246.

    Article  MATH  MathSciNet  Google Scholar 

  • Kaneko, M. and Ochiai, H. (2002). On coefficients of Yablonskii-Vorob'ev polynomials. Preprint, arXiv:math.QA/0205178.

    Google Scholar 

  • Kirillov, A. N. and Taneda, M. (2002a). Generalized Umemura polynomials. Rocky Mount. J. Math., 32:691–702.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirillov, A. N. and Taneda, M. (2002b). Generalized Umemura polynomials and Hirota-Miwa equations. In Kashiwara, M. and Miwa, T., editors, MathPhys Odyssey, 2001, volume 23 of Prog. Math. Phys., pages 313–331. Birkhauser-Boston, Boston, MA.

    Google Scholar 

  • Lukashevich, N. A. (1965). Elementary solutions of certain Painlevé equations. Diff. Eqns., 1:561–564.

    Google Scholar 

  • Lukashevich, N. A. (1967a). On the theory of the third Painlevé equation. Diff. Eqns., 3:994–999.

    Google Scholar 

  • Lukashevich, N. A. (1967b). Theory of the fourth Painlevé equation. Diff. Eqns., 3:395–399.

    Google Scholar 

  • Lukashevich, N. A. (1968). Solutions of the fifth equation of painlevé equation. Diff. Eqns., 4:732–735.

    Google Scholar 

  • Lukashevich, N. A. (1971). The second painlevé equation. Diff. Eqns., 6:853–854.

    Google Scholar 

  • Lukashevich, N. A. and Yablonskii, A. I. (1967). On a class of solutions of the sixth painlevé equation. Diff. Eqns., 3:264–266.

    MATH  Google Scholar 

  • Masuda, T. (2002). On a class of algebraic solutions to Painlevé VI equation, its determinant formula and coalescence cascade. preprint, arXiv:nlin.SI/0202044.

    Google Scholar 

  • Masuda, T., Ohta, Y., and Kajiwara, K. (2002). A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J., 168:1–25.

    MathSciNet  MATH  Google Scholar 

  • Mazzocco, M. (2001). Rational solutions of the Painlevé VI equation. J. Phys. A: Math. Gen., 34:2281–2294.

    Article  MATH  MathSciNet  Google Scholar 

  • Milne, A. E., Clarkson, P. A., and Bassom, A. P. (1997). Bäcklund transformations and solution hierarchies for the third Painlevé equation. Stud. Appl. Math., 98:139–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Murata, Y. (1985). Rational solutions of the second and the fourth Painlevé equations. Funkcial. Ekvac., 28:1–32.

    MATH  MathSciNet  Google Scholar 

  • Murata, Y. (1995). Classical solutions of the third Painlevé equations. Nagoya Math. J., 139:37–65.

    MATH  MathSciNet  Google Scholar 

  • Noumi, M. and Yamada, Y. (1998a). Affine Weyl groups, discrete dynamical systems and Painlevé equations. Commun. Math. Phys., 199:281–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Noumi, M. and Yamada, Y. (1998b). Umemura polynomials for the Painlevé V equation. Phys. Lett., A247:65–69.

    MathSciNet  Google Scholar 

  • Noumi, M. and Yamada, Y. (1999). Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J., 153:53–86.

    MathSciNet  MATH  Google Scholar 

  • Noumi M., Okada S., O. K. and H., U. (1998). Special polynomials associated with the Painlevé equations. II. In Saito, M.-H., Shimizu, Y., and Ueno, R., editors, Integrable Systems and Algebraic Geometry, pages 349–372. World Scientific, Singapore.

    Google Scholar 

  • Ohyama, Y. (2001). On the third Painlevé equations of type d 7 . Preprint, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University.

    Google Scholar 

  • Okamoto, K. (1986). Studies on the Painlevé equations III. Second and fourth Painlevé equations, P II and P IV. Math. Ann., 275:221–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Okamoto, K. (1987a). Studies on the Painlevé equations I. Sixth Painlevé equation P VI. Ann. Mat. Pura Appl. (4), 146:337–381.

    Article  MATH  MathSciNet  Google Scholar 

  • Okamoto, K. (1987b). Studies on the Painlevé equations II. Fifth Painlevé equation P V . Japan. J. Math., 13:47–76.

    MATH  MathSciNet  Google Scholar 

  • Okamoto, K. (1987c). Studies on the Painlevé equations IV. Third Painlevé equation P III . Funkcial. Ekvac., 30:305–332.

    MATH  MathSciNet  Google Scholar 

  • Sakai, H. (2001). Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys., 220:165–229.

    Article  MATH  Google Scholar 

  • Schiff, J. (1995). Bäcklund transformations of MKdV and Painlevé equations. Nonlinearity, 7:305–312.

    Article  MathSciNet  Google Scholar 

  • Tamizhmani, T., Grammaticos, B., Ramani, A., and Tamizhmani, K. M. (2001). On a class of special solutions of the Painlevé equations. Physica, A295:359–370.

    MathSciNet  Google Scholar 

  • Taneda, M. (2000). Remarks on the Yablonskii-Vorob'ev polynomials. Nagoya Math. J., 159:87–111.

    MATH  MathSciNet  Google Scholar 

  • Taneda, M. (2001a). Polynomials associated with an algebraic solution of the sixth Painlevé equation. Japan. J. Math., 27:257–274.

    MATH  MathSciNet  Google Scholar 

  • Taneda, M. (2001b). Representation of Umemura polynomials for the sixth Painlevé equation by the generalized Jacobi polynomials. In Kirillov, A. N., Tsuchiya, A., and Umemura, H., editors, Physics and Combinatorics, pages 366–376. World Scientific, Singapore.

    Google Scholar 

  • Temme, N. M. (1996). Special Functions. An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York.

    MATH  Google Scholar 

  • Umemura, H. (1998). Painlevé equations and classical functions. Sugaku Expositions, 11:77–100.

    MathSciNet  Google Scholar 

  • Umemura, H. (2000). On the transformation group of the second Painlevé equation. Nagoya Math. J., 157:15–46.

    MATH  MathSciNet  Google Scholar 

  • Umemura, H. (2001). Painlevé equations in the past 100 years. AMS Translations, 204:81–110.

    Google Scholar 

  • Umemura, H. (2003). Special polynomials associated with the Painlevé equations. I. In Vinet, L. and Winternitz, P., editors, Theory of Nonlinear Special Functions: the Painlevé Transcendents (Montreal, Canada, 1996), CRM Series in Mathematical Physics. Springer-Verlag, New York. To appear.

    Google Scholar 

  • Umemura, H. and Watanabe, H. (1997). Solutions of the second and fourth Painlevé equations I. Nagoya Math. J., 148:151–198.

    MathSciNet  MATH  Google Scholar 

  • Umemura, H. and Watanabe, H. (1998). Solutions of the third Painlevé equation I. Nagoya Math. J., 151:1–24.

    MathSciNet  MATH  Google Scholar 

  • Veselov, A. P. and Shabat, A. B. (1993). A dressing chain and the spectral theory of the Schrödinger operator. Funct. Anal. Appl., 27:1–21.

    Article  MathSciNet  Google Scholar 

  • Vorob'ev, A. P. (1965). On rational solutions of the second Painlevé equation. Diff. Eqns., 1:58–59.

    MATH  Google Scholar 

  • Watanabe, H. (1995). Solutions of the fifth Painlevé equation I. Hokkaido Math. J., 24:231–267.

    MATH  MathSciNet  Google Scholar 

  • Yablonskii, A. I. (1959). On rational solutions of the second Painlevé equation. Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk., 3:30–35. In Russian.

    Google Scholar 

  • Yamada, Y. (2000). Special polynomials and generalized Painlevé equations. In Koike, K., Kashiwara, M., Okada, S., Terada, I., and Yamada, H. F., editors, Combinatorial Methods in Representation Theory (Kyoto, 1998), volume 28 of Adv. Stud. Pure Math., pages 391–400. Kinokuniya, Tokyo.

    Google Scholar 

  • Yuan, W.-J. and Li, Y.-Z. (2002). Rational solutions of painlevé equations. Canad. J. Math., 54:648–670.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Clarkson, P.A. (2005). Painlevé Equations and Associated Polynomials. In: Ismail, M.E., Koelink, E. (eds) Theory and Applications of Special Functions. Developments in Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/0-387-24233-3_7

Download citation

Publish with us

Policies and ethics