Skip to main content
Log in

Dressing chains and the spectral theory of the Schrödinger operator

  • Published:
Functional Analysis and Its Applications Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. P. Novikov, “Periodic problem for the Korteweg—de Vries equation. I,” Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).

    Google Scholar 

  2. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of KdV type, finite-zone linear operators and abelian varieties,” Usp. Mat. Nauk,31, No. 1, 55–136 (1976).

    Google Scholar 

  3. P. D. Lax, “Periodic solutions of Korteweg—de Vries equation,” Comm. Pure Appl. Math.,28, 141–188 (1975).

    Google Scholar 

  4. H. P. McKean and P. van Moerbeke, “The spectrum of Hill's equation,” Invent. Math.,30, 217–274 (1975).

    Google Scholar 

  5. V. A. Marchenko, Sturm—Liouville Operators and their Applications [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  6. G. Darboux, “Sur la representations spherique des surfaces,” Compt. Rend.,94, 1343–1345 (1882).

    Google Scholar 

  7. M. M. Crum, “Associated Sturm—Liouville systems,” Quart. J. Math. Ser. 2,6, 121–127 (1955).

    Google Scholar 

  8. A. B. Shabat, “One-dimensional perturbations of a differential operator and inverse scattering problem,” Selecta Math. Soviet.,4, No. 1, 19–35 (1985).

    Google Scholar 

  9. P. Deift, “Application of a commutation formula,” Duke Math. J.,45, 267–310 (1978).

    Google Scholar 

  10. M. Adler and J. Moser, “On a class of polynomials connected with the Korteweg—de Vries equation,” Comm. Math. Phys.,61, 1–30 (1978).

    Google Scholar 

  11. A. B. Shabat, “The infinite-dimensional dressing dynamical system,” Inverse Problems,6, 303–308 (1992).

    Google Scholar 

  12. A. B. Shabat and R. I. Yamilov, “Symmetries of nonlinear chains,” Algebra Analiz,2, No. 2, 183–208 (1990).

    Google Scholar 

  13. A. P. Veselov, “On the Hamiltonian formalism for the Novikov—Krichever equation of commutativity of two operators,” Funkts. Anal. Prilozhen.,13, No. 1, 1–7 (1979).

    Google Scholar 

  14. J. L. Burchnall and T. W. Chaundy, “Commutative ordinary differential operators,” Proc. London Soc. Ser. 2,21, 420–440 (1923).

    Google Scholar 

  15. E. L. Ince, Ordinary Differential Equations, Dover, New York (1947).

  16. F. Magri, “A simple model of an integrable Hamiltonian equation,” J. Math. Phys.,19, 1156–1162 (1978).

    Google Scholar 

  17. I. M. Gelfand and I. Ya. Dorfman, “Hamiltonian operators and connected algebraic structures,” Funkts. Anal. Prilozhen.,13, No. 4, 13–30 (1979).

    Google Scholar 

  18. M. Antonowicz, A. P. Fordy, and S. Wojciechowski, “Integrable stationary flows: Miura maps and bi-Hamiltonian structures,” Phys. Lett. A,124, 143–150 (1987).

    Google Scholar 

  19. J. Weiss, “Periodic fixed points of Bäcklund transformations and the KdV equation,” J. Math. Phys.,27 (11, 2647–2656 (1986);28 (9), 2025–2039 (1987).

    Google Scholar 

  20. P. Santini, “Solvable nonlinear algebraic equations,” Inverse Problems,6 (1990).

  21. A. P. Veselov, “On the growth of the number of images of the point under the iterations of the multivalued mapping,” Mat. Zametki,49, No. 2, 29–35 (1991).

    Google Scholar 

  22. M. Adler and P. van Moerbeke, Algebraic Integrable Systems: a Systematic Approach. Perspectives in Math., Academic Press, Boston (1989).

    Google Scholar 

  23. V. E. Adler, “Recuttings of polygons,” Funkts. Anal. Prilozhen.,27, No. 2, 79–82 (1993).

    Google Scholar 

  24. F. J. Bureau, “Integration of some nonlinear systems of ordinary differential equations,” Annali Mat. Pura Appl. (IV),44, 345–360 (1972).

    Google Scholar 

  25. F. Ehlers and H. Knoerrer, “An algebro-geometric interpretation of the Bäcklund transformation for the Korteweg—de Vries equation,” Comm. Math. Helv.,57, No. 1, 1–10 (1982).

    Google Scholar 

  26. H. Bateman and A. Erdély, Higher Transcendental Functions. Vol. 3, McGraw-Hill (1955).

  27. S. P. Novikov (ed.), Theory of Solitons [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  28. H. P. McKean and E. Trubowitz, “The spectral class of the quantum mechanical harmonic oscillator,” Comm. Math. Phys.,82, 471–495 (1982).

    Google Scholar 

  29. B. M. Levitan, “On the Sturm—Liouville operators on the whole line with one and the same spectrum,” Mat. Sb.,132, No. 1, 73–103 (1987).

    Google Scholar 

Download references

Authors

Additional information

Moscow State University, Landau Institute for Theoretical Physics, Russian Academy of Sciences. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 27, No. 2, pp. 1–21, April–June, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselov, A.P., Shabat, A.B. Dressing chains and the spectral theory of the Schrödinger operator. Funct Anal Its Appl 27, 81–96 (1993). https://doi.org/10.1007/BF01085979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01085979

Keywords

Navigation