Skip to main content
Log in

Monodromy- and spectrum-preserving deformations I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A method for solving certain nonlinear ordinary and partial differential equations is developed. The central idea is to study monodromy preserving deformations of linear ordinary differential equations with regular and irregular singular points. The connections with isospectral deformations and with classical and recent work on monodromy preserving deformations are discussed. Specific new results include the reduction of the general initial value problem for the Painlevé equations of the second type and a special case of the third type to a system of linear singular integral equations. Several classes of solutions are discussed, and in particular the general expression for rational solutions for the second Painlevé equation family is shown to be −d/dx ln(Δ+), where Δ+ and Δ are determinants. We also demonstrate that each of these equations is an exactly integrable Hamiltonian system. The basic ideas presented here are applicable to a broad class of ordinary and partial differential equations; additional results will be presented in a sequence of future papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ince, E.L.: Ordinary differential equations. New York: Dover Publications 1947

    Google Scholar 

  2. Ablowitz, M.J., Segur, H.: Phys. Rev. Lett.38, 1103–1106 (1977)

    Google Scholar 

  3. Airault, H.: Rational solutions of Painlevé equations (to appear)

  4. Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Phys. Rev. B13, 316–371 (1976)

    Google Scholar 

  5. Barouch, E., McCoy, B.M., Wu, T.T.: Phys. Rev. Lett.31, 1409–1411 (1973)

    Google Scholar 

  6. McCoy, B.M., Tracy, C.A., Wu, T.T.: J. Math. Phys.18, 1058–1092 (1977)

    Google Scholar 

  7. Satō, M., Miwa, T., Jimbo, M.: A series of papers entitled Holonomic Quantum Fields: I. Publ. RIMS, Kyoto Univ.14, 223–267 (1977); II. Publ. RIMS, Kyoto Univ.15, 201–278 (1979); III. Publ. RIMS Kyoto Univ.15, 577–629 (1979). IV., V. RIMS Preprints 263 (1978), and 267 (1978). The paper we refer to most often is III. See also a series of short notes: Studies on holonomic quantum fields, I–XV

    Google Scholar 

  8. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Commun. Pure Appl. Math.27, 97–133 (1976)

    Google Scholar 

  9. Fuchs, R.: Math. Ann.63, 301–321 (1906)

    Google Scholar 

  10. Ablowitz, M.J., Segur, H.: Stud. Appl. Math.57, 13–44 (1977)

    Google Scholar 

  11. Hastings, S.P., McLeod, J.B.: Univ. of Wisconsin, MRC Report No. 1861 (1978)

  12. Ablowitz, M.J., Ramani, A., Segur, H.: Lett. Nuovo Cimento23, 333 (1978).

    Google Scholar 

  13. Two preprints: A connection between nonlinear evolution equations and ordinary differential equations ofP-type, I, II

  14. Tracy, C.A.: Proc. NATO Advanced Study Institute on: Nonlinear equations in physics and mathematics, 1978, (ed. A. Barut). Dordrecht, Holland: Reidel 1978

    Google Scholar 

  15. Schlesinger, L.: J. Reine Angewandte Math.141, 96–145 (1912)

    Google Scholar 

  16. Garnier, R.: Ann. Ec. Norm. Sup.29, 1–126 (1912)

    Google Scholar 

  17. Birkhoff, G.D.: Trans. AMS10, 436–470 (1909)

    Google Scholar 

  18. Birkhoff, G.D.: Proc. Am. Acad. Arts Sci.49, 521–568 (1913)

    Google Scholar 

  19. Garnier, R.: Rend. Circ. Mat. Palermo,43, 155–191 (1919)

    Google Scholar 

  20. Davis, H.T.: Introduction to nonlinear differential and integral equations. New York: Dover Publications 1962

    Google Scholar 

  21. Choodnovsky, D.V., Choodnovsky, G.V.: Completely integrable class of mechanical systems connected with Korteweg-deVries and multicomponent Schrödinger equations. I. Preprint, École Polytechnique, 1978

  22. Moser, J., Trubowitz, E.: (to appear)

  23. Olver, F.W.J.: Asymptotics and special functions. New York: Academic Press 1974

    Google Scholar 

  24. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Stud. Appl. Math.53, 249–315 (1974)

    Google Scholar 

  25. Flaschka, H., Newell, A.C.: Springer Lecture Notes in Physics38, 355–440 (1975)

    Google Scholar 

  26. Airault, H., McKean, Jr., H.P., Moser, J.: Comm. Pure Appl. Math.30, 95–148 (1977)

    Google Scholar 

  27. Brieskorn, E.: Jber. Dt. Math.-Verein.78, 93–112 (1976)

    Google Scholar 

  28. Ueno, K.: Kyoto, RIMS master's thesis, Dec. 1978. RIMS Preprints 301, 302 (1979)

  29. Sibuya, Y.: Proc. Int. Conf. Diff. Eq. pp. 709–738. (ed. H. A. Antosiewicz). New York: Academic Press 1975;

    Google Scholar 

  30. Bull. AMS83, 1075–1077 (1977)

    Google Scholar 

  31. Zakharov, V.E., Shabat, A.B.: Sov. Phys. JETP34, 62–69 (1972)

    Google Scholar 

  32. Zakharov, V.E.: Paper at I. G. Petrovskii Memorial Converence, Moscow State Univ., Jan. 1976 (this paper has been referred to in many subsequent publications, but has apparently never been published)

  33. Krichever, I.M.: Funkts. Anal. Prilozen11, 15–31 (1977)

    Google Scholar 

  34. Novikov, S.P.: Rocky Mt. J. Math.8, 83–94 (1978)

    Google Scholar 

  35. Newell, A.C.: Proc. Roy. Soc. London A365, 283–311 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaschka, H., Newell, A.C. Monodromy- and spectrum-preserving deformations I. Commun.Math. Phys. 76, 65–116 (1980). https://doi.org/10.1007/BF01197110

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197110

Keywords

Navigation