Skip to main content

Nutrient Deficiency Disorders in Vegetables and their Management

  • Chapter
Fruit and Vegetable Diseases

Part of the book series: Disease Management of Fruits and Vegetables ((DMFV,volume 1))

  • 984 Accesses

Abstract

Among the horticultural crops vegetables have an important position and is a high protective food of dietary complex of human beings. For balanced diet suplementation of vegetables along with cereals and pulses is a necessary step towards complete food. In recent past the production of vegetables have gone up due to adaptation of modern technology and fertilization formulation but still do not show any parallelism with consumption. For sustainable production, the vegetable crops exert tremendous pressure on the soil for nutrients due to their productivity ability. This results in depletion of essential nutrients from the soil. To evaluate fertility status of soils several techniques are in vogue. In addition to visual symptoms of each essential nutrient for various crops their critical concentrations have also been worked out for most of the vegetables. Soil analysis further substantiate these findings for actual nutrient status. In certain cases when visible symptoms due to any deficiency is not perceptible, or the plant shows latent deficiency help of biochemical parameters are also useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Aldrich, S.R. 1967. Plant analysis: Problems and opportunities. In, “Soil Testing and Plant Analysis” Part II Pant Analysis, pp. 1–10. American Society of Agronomy, Madison WI.

    Google Scholar 

  • Agarwala, S.C., Sharma, C.P., Farooq, S. and Chatterjee, C. 1978. Effect of molybdenum deficiency on the growth and metabolism of corn plants raised in sand culture. Canadian Journal of Botany, 56: 1905–1908.

    CAS  Google Scholar 

  • Agarwala, S.C., Sharma, P.N., Chatterjee, C. and Sharma, C.P. 1981. Development and enzyme changes during pollen development in boron deficient maize plants. Journal of Plant Nutrition, 3: 329–336.

    CAS  Google Scholar 

  • Arnon, D.I. and Stout, P.R. 1939. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiology, 14: 371–375.

    CAS  Google Scholar 

  • Bar-Akiva, A. 1961. Biochemical indications as a means of distinguishing between iron and manganese deficiency symptoms in citrus plants. Nature, 190: 647–648.

    CAS  Google Scholar 

  • Bar-Akiva, A. and Lavon, R. 1969. Carbonic anhydrase activity as an indicator of zinc deficiency in citrus leaves. Journal of Horticulture Science, 44: 359–362.

    CAS  Google Scholar 

  • Berger, K.C. and Truog, E. 1944. In: “Soil Chemical Analysis” (ed. Jackson, M.L.). Prentice-Hall of Japan, Inc. Tokyo, pp. 386.

    Google Scholar 

  • Bergmann, W. 1992. Colour Atlas, Nutritional Disorders of Plants Development, Visual and Analytical Diagnosis. Fischer Verlag, Jena.

    Google Scholar 

  • Bergmann, W. and Neubert, P. 1976. Plant Diagnosis and Plant Analysis. Veb Sustav Fischer Verlag, Jena.

    Google Scholar 

  • Bernard, O., (ed.) 1979. Hawk’s Physiological Chemistry. Tata McGraw Hill, Delhi, India.

    Google Scholar 

  • Bonilla, I., Cadahia, C., Carpena, O. and Hernado, V. 1980. Effect of boron on nitrogen metabolism and sugar levels of sugarbeet. Plant and Soil, 57: 3–9.

    Article  CAS  Google Scholar 

  • Bose, T.K. and Som, M.G. (eds.) 1986. Vegetable Crops in India. Naya Prakash, Calcutta.

    Google Scholar 

  • Branden, R. 1978. Ribulose-1, 5-diphosphate carboxylase and oxygenase from green plants are two different enzymes. Biochemistry Biophysics Research Communication, 81: 539–546.

    CAS  Google Scholar 

  • Brandry, N.C. 1980. The nature and properties of soil. Mac Millan Publishing, Inc. USA.

    Google Scholar 

  • Brill, A.S., Martin, R.B. and Williams, R.J.P. 1964. Copper in biological systems. In, “Electronic Aspects of Biochemistry” (ed. Pullman, B.) Academic Press. New York and London, pp. 520–557.

    Google Scholar 

  • Brown, J.C. and Hendricks, S.B. 1952. Enzyme activities as indications of copper and iron deficiencies in plants. Plant Pathology, 27: 657–660.

    Google Scholar 

  • Burstrom, H. 1968. Calcium and plant growth. Biological Review, 43: 287–316.

    CAS  Google Scholar 

  • Buzover, F.Y. 1951. Effect of boron on accumulation of carbohydrates and enzymatic activity of potato. Doklady Akadmii Nank, U.S.S.R. 78: 1239–1242.

    Google Scholar 

  • Carpena, P., Hernando, V., Cadahia, C. and Bonillo, I. 1978. Effect of boron on the activity of nitrate reductase in sugarbeet. International Series, New Zealand Department of Science and Industrial Research, 134: 83–90.

    CAS  Google Scholar 

  • Chapman, H.D. (ed.) 1966. Diagnostic Criteria for Plant and Soils. University of Calofornia, Berkeley, pp. 793.

    Google Scholar 

  • Chapman, H.D., Joseph, H. and Rayner, D.S. 1966. Some effects of calcium deficiency on citrus. Proceeding of American Society of Horticulture Science, 86: 183–193.

    Google Scholar 

  • Chatterjee, C., Nautiyal, N. and Agarwala, S.C. 1985. Metabolic changes in mustard plants associated with molybdenum deficiency. New Phytology, 100: 511–518.

    CAS  Google Scholar 

  • Chatterjee, C., Sinha, P. and Agarwala, S.C. 1990. Boron nutrition of cowpea. Proceeding of Indian Academy of Sciences. (Plant Science), 100: 311–318.

    Google Scholar 

  • Cheniae, G.M. 1970. Photosystem II and O2 evolution. Annual Review of Plant Physiology, 21: 467–498.

    Article  CAS  Google Scholar 

  • Cheniae, G.M. and Martin, I.F. 1966. Energy conversion by the photosynthetic apparatus. Brookhaven Symposium on Biology, 19: 406–417.

    CAS  Google Scholar 

  • Cook, R.L. and Miller, C.E. 1953. Plant Nutrient Deficiencies. Spec. Bull. No. 353. Michigan Agricultural Experimental Station, Michigan State University, East Lansing, U.S.A.

    Google Scholar 

  • Davidson, F.M. and Long, C. 1958. The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage leaf phospholipase. Biochemical Journal, 69: 458–466.

    CAS  PubMed  Google Scholar 

  • Dodds, J.J.A. and Ellis, R.J. 1966. Cation-stimulated adenosine triphosphatase activity in plant cell walls. Biochemical Journal, 101: 131.

    Google Scholar 

  • Dugger, W.M. 1983. Boron in plant metabolism. In: Encyclopedia of Plant Physiology, New Series 15 B: (eds. Lauchli, A. and Bieleski, R.L.) Springer-Verlag, Berlin, New York, pp. 626–650.

    Google Scholar 

  • Dutta, T.R. and Mcllarth, W.J. 1964. Effect of boron on growth and lignification in sunflower tissue and organ cultures. Botanical Gazette, 125: 89–96.

    Article  CAS  Google Scholar 

  • Dwivedi, R.S. and Randhawa, N.S. 1974. Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant and Soil, 40: 445–451.

    Article  CAS  Google Scholar 

  • Dyar, J.J. and Webb, K.L. 1961. A relationship between boron auxin in C-translocation in bean plants. Plant Physiology, 36: 672–676.

    CAS  Google Scholar 

  • Edwards, G.E. and Mohamed, A.K. 1973. Reduction in carbonic anhydrase activity in zinc deficient leaves of Phaseolus vulgaris L. Crop Science, 13: 351–354.

    CAS  Google Scholar 

  • Epstein, E. 1972. Mineral nutrition of plants: Principles and perspectives. Wiley, New York.

    Google Scholar 

  • Ernst, W.H.O. 1993. Ecological aspects of sulphur in higher plants: the impact of SO2 and the evolution of the biosynthesis of organic sulphur compounds on populations and ecosystems. In, “Sulphur Nutrition and Asimilation in Higher Plants” (eds. Dekok, J.L., Stulen, I., Rennenberg, H., Brunold, C. and Rauser, W.E.) SPB Academic publishing, The Hague, The Netherlands. pp. 295–313.

    Google Scholar 

  • Esteban, R.M., Collado, J.G., Lopez, A.F.J. and Fernandez, H.M. 1985. Effect of boron on soluble protein and sugar contents of tomato roots. Plant and Soil, 89: 149–151.

    Google Scholar 

  • Fischer, R.A. and Hsiao, T.C. 1968. Stomatal opening in isolated epidermal strips of Vicia faba II. Responses to KCl concentration and the role and the role potassium absorption. Plant Physiology, 43: 1953–1958.

    CAS  Google Scholar 

  • Fox, L.R., Purves, W.K. and Nakada, H.I. 1965. The role of horse-radish peroxidase in indole-3-acetic acid oxidation. Biochemistry, 4: 2754–2763.

    Article  CAS  PubMed  Google Scholar 

  • Fujino, M. 1967. Adinosine triphosphate and adenosine triphosphatase in stomatal movement. Science Bulletin, Faculty of Education, Nagasaki University 18: 1–47.

    Google Scholar 

  • Gauch, H.G. 1972. Inorganic plant nutrition. Stroudburg, Pa, Powden, Hutchinson and Ross.

    Google Scholar 

  • Gauch, H.G. and Dugger, W.M. Jr. 1954. The physiological role of boron in higher plants: a review and interpretation, University of Mryland Agricultural Experimental Station. Technical Bulletin, A. 80.

    Google Scholar 

  • Ghosh, S.P., Ramanujam, T., Jos, J.S., Moorthy, S.N. and Nair, R.G. 1988. Tuber Crops. Oxford and IBH, India.

    Google Scholar 

  • Griffiths, D.A. and Miller, A.J. 1973. Hyperbolic regression-a model based on two-phase piecewise linear regression with a smooth transition between regimes. Communication Statistics, 2: 561–569.

    Google Scholar 

  • Grigg, J.L. 1953. Determination of available molybdenum in soils. Newzealand Journal of Science and Technology, 34A: 405.

    CAS  Google Scholar 

  • Grinkevich, N.I., Borovkova, L.I. and Gribovskaya, I.F. 1970. The effect of trace elements on the alkaloid content of Atropa belladonna L. Farmatsiya: 41–45.

    Google Scholar 

  • Haas, A.R.C. and Klotz, L.J. 1931. Further evidence for the necessity of boron for health in citrus. Botanical Gazette, 92: 94–100.

    Article  CAS  Google Scholar 

  • Hall, J.D., Barr, R., Al-Abbas, A.H. and Crane, F.L. 1972. The ultrastructure of chloroplasts in mineral-deficient maize leaves. Plant Physiology, 50: 404–409.

    Google Scholar 

  • Hatch, M.D. and Slack, C.R. 1970. Photosynthetic CO2-fixation pathways. Annual Review of Plant Physiology. 21: 141–162.

    Article  CAS  Google Scholar 

  • Hewitt, E.J. 1957. Some aspects of micronutrient element metabolism in plants. Nature, London, 180: 1020–1022.

    Google Scholar 

  • Hewitt, E.J. 1963. The essential nutrient elements: Requirements and interactions in plants. In, “Plant Physiology Vol. III” (ed. Steward, F.C.). Academic Press, New York, pp. 137–360.

    Google Scholar 

  • Hewitt, E.J. 1966. Sand and Water Culture Methods Used in the Study of Plant Nutrition Technical Communication 22. Commonwealth Bureaux. Horticulture. Plantarum. Crops, England.

    Google Scholar 

  • Hewitt, E.J. 1983. Diagnosis of mineral disorders in plants. In, “Principles” Vol. 1 (eds. Bould, C., Hewitt, E.J. and Needham, P.) Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Hewitt, E.J. and Smith, T.A. 1974. Plant Mineral Nutrition, English University Press, London.

    Google Scholar 

  • Hinman, R.L. and Long, J. 1965. Peroxidase-catalysed oxidation of indole-3-acetic acid. Biochemistry, 4: 144–158.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, A.M. and Torrey, J.G. 1980. Ultrastructural changes in sunflower root cells in relation to boron deficiency and added auxin. Canadian Journal of Botany, 58: 856–866.

    CAS  Google Scholar 

  • Humble, G.D. and Raschke, K. 1971. Stomatal opening quantitatively related to potassium transport. Plant Physiology, 48: 447–453.

    CAS  Google Scholar 

  • Indira, P. and Peter, K.V. 1993. Under exploited Tropical Vegetables, Publication Unit, Directorate of Extension, Kerala Agricultural University.

    Google Scholar 

  • Jackson, M.L. 1958. Soil Chemical Analysis. Prentice Hall Inc. Englewood, New Jersey

    Google Scholar 

  • Jacobson, L. 1945. Iron in the leaves and chloroplasts of some plants in relation to their chlorophyll contents. Plant Physiology, 20: 233–245.

    CAS  Google Scholar 

  • Ji, Z.H., Korcak, R.F., Wergin, W.P., Fan, F. and Faust, M. 1984. Cellular ultrastructure and net photosynthesis of apple seedlings under iron stress, Journal of Plant Nutrition, 7: 911–928.

    CAS  Google Scholar 

  • Johansen, C. 1978. Effect of plant age on element concentrations in parts of Demodium intortum cv. Greenleaf. Communications in Soil Science and Plant Analysis, 9: 279–297.

    CAS  Google Scholar 

  • Jones, J.B. Jr. 1988. Soil Testing and Plant Analysis. Procedure and Use Tech. Bull. 109: Food and Fertilizer Technology Centre. Taipei City. Taiwan, pp. 14.

    Google Scholar 

  • Kaleya, P.M., Manolov, P., Ignatov, G. and Lilova, I. 1989. Changes in the structure and function of the photosynthetic apparatus in peach leaves under iron deficiency. Doklady Bolg. Akademii, Nauka, 42: 105–108.

    CAS  Google Scholar 

  • Kessler, B. 1957. Effect of certain nucleic acid components upon the status of iron, deoxyribonucleic acid and lime induced chlorosis in fruit trees. Nature, 179: 1015–1016.

    CAS  Google Scholar 

  • Kok, B. and Cheniae, G.M. 1966. Kinetics and intermediates of the oxygen evolution step in photosynthesis. Current Topics on Bioenergy, 1: 1–47.

    Google Scholar 

  • Korokov, P.F. and Kiram, V. 1988. Vegetable growing in Hail effected gardens of tropical and sub-tropical Areas. Mir Publications, Moscow.

    Google Scholar 

  • Krupnikove, T.A. and Smirnov, Yu.S. 1981. Content of phenolic compounds in plants in relation to boron availability. Botanigal Zhurnal Leningrad, 66: 536–542.

    Google Scholar 

  • Lindsay, W.L. and Norvell, W.A. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal, 42: 421–428.

    CAS  Google Scholar 

  • Loneragan, J.F. 1968. Nutrient requirement of plants. Nature, 220: 1307–1308.

    CAS  PubMed  Google Scholar 

  • Longeragan, J.F., Snowball, K. and Robson, A.D. 1976. Remobilization of nutrients and its significance in plant nutrition. In, “Transport and Transfer Processes in Plants” (eds. Wordlow, I.F. and Passioura, J.B.), Academic Press, New York. pp. 463–469.

    Google Scholar 

  • Malkin, R. and Malmstrom, B.G. 1970. The state and function of copper in biological systems. Advances in Enzymology, 33: 177–244.

    CAS  Google Scholar 

  • Marinos, N.G. 1963. Studies on submicroscopic aspects of mineral deficiencies. II. Nitrogen, potassium, sulphur, phosphorus and magnesium deficiencies in the shoot apex of barley. American Journal of Botany, 50: 998–1005.

    CAS  Google Scholar 

  • Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, New York.

    Google Scholar 

  • Mazliak, P. 1973. Lipid metabolism in plants. Annual Review of Plant Physiology, 24: 287–310.

    Article  CAS  Google Scholar 

  • Mengel, K. and Kirkby, E.A. 1987. Principles of plant Nutrition International Potash Institute Bern. Switzerland.

    Google Scholar 

  • Milosavljevic, M. and Popovic, R. 1970. The effect of boron and manganese on the intensity of photosynthesis in grape vines. Archiv Poljopr Nauka, 23: 15–34.

    Google Scholar 

  • Nath, P. 1976. Vegetables for the Tropical Region, Indian Council of Agricultural Research, New Delhi.

    Google Scholar 

  • Neales, T.F. 1959. Effect of boron on sugar soluble in 80% ethanol in flax seedling. Nature, London, 183: 4830.

    Google Scholar 

  • Nicholas, D.J.O. 1957. An appraisal of the use of chemical tests for determining the mineral status of crop plants. In: Plant Analysis and Fertilizer Problems (ed. Prevot, P.) I.H.R.O. Paris, 119–139.

    Google Scholar 

  • Nishio, J.N., Taylor, S.E. and Terry, N. 1985. Changes in thylakoid galactolipids and proteins during iron nutrition mediated chloroplast development. Plant Physiology, 77: 705–711.

    CAS  Google Scholar 

  • Ohki, K. 1976. Effect of zinc nutrition on photosynthesis and carbonic anhydrase activity in cotton. Plant Physiology, 38: 300–304.

    CAS  Google Scholar 

  • Olsen, K.L. 1958. Mineral Deficiency Symptoms in Rice. Bulletin 605, Agricultural Experiment Station, University of Arkans.

    Google Scholar 

  • Olsen, S.R., Cole, C.V., Watanake, F.S. and Dean, C.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture, Washington, D.C. Circular 939, pp. 19.

    Google Scholar 

  • Paulsen, G.M. and Harper, J.E. 1968. Evidence for a role of calcium in nitrate assimilation in wheat seedlings. Plant Physiology, 43: 775–780.

    CAS  Google Scholar 

  • Peisach, J.L., Aisen, P. and Blumberg, W.E. (eds.) 1966. the Biochemistry of copper. Academic Press.

    Google Scholar 

  • Peter, K.V. and Devadas, V.S. 1989. Leaf vegetables, Indian Horticulture, 33 and 34: 8–11.

    Google Scholar 

  • Pirson, A. 1937. Ernahrungs and Stoffwechselphysiolo-gische untersuchangen an Foutinalis und Chlorella. Zhurnal, Botanichiskii., 31: 193–267.

    CAS  Google Scholar 

  • Pirson, A. 1958. Manganese: its role in photosynthesis. In, “Trace Elements” (eds. Lamp, C.A., Bentley, O.G. and Beatie, J.M.) Academic Press. pp. 81–98.

    Google Scholar 

  • Plesnicar, M. and Bendall, D.S. 1971. The plastocyanin content of chloroplast from higher plants estimated by a sensitive enzyme assay. Biochemical Biophysics Acta, 216: 192–199.

    Google Scholar 

  • Pridham, J.B. (ed.) 1963. Enzyme chemistry of phenolic compounds. Pergamon P.

    Google Scholar 

  • Rains, D.W. 1972. Salt transport by plants in relation to salinity. Annual Review of Plant Physiology, 23: 367–388.

    Article  CAS  Google Scholar 

  • Rains, D.W. 1976. Mineral metabolism. In, “Plant Biochemistry” (eds. Bonner, J. and Varner, J.E.). Academic Press. pp. 561–597.

    Google Scholar 

  • Randall, P.J. and Bouma, D. 1973. Zinc deficiency, carbonic anhydrase and photosynthesis in leaves of spinach. Plant Physiology, 52: 229–232.

    CAS  Google Scholar 

  • Sabbe, W.E. and Marx, D.B. 1987. Soil testing: Spatial and temporal variability. In, “Soil Testing Sampling, Correlation, Calibration, and Interpretation” (ed. Brown, J.R.) Spec. Pub. No. 21, Soil Science Society of America, Madison, Wisconsin, 1–14.

    Google Scholar 

  • Scaife, A. 1988. Derivation of critical nutrient concentrations for growth rate from data from field experiments. Plant and Soil, 109: 159–169.

    Article  Google Scholar 

  • Schmidt, A. 1986. Regulation of sulphur metabolism in plants. Progressive Botany, 48: 133–150.

    CAS  Google Scholar 

  • Schneider, E.A. and Wightman, F. 1974. Metabolism of auxin in higher plants. A Review of Plant Physiology, 25: 487–513.

    CAS  Google Scholar 

  • Schung, E. 1993. Physiological functions and environmental relevance of sulphur containing secondary metabolities. In, “Sulphur Nutrition and Assimilation in Higher plants” (eds. Dekok, L.J., Stulen, I., Rennenberg, H., Brunold, C. and Rauser, W.E.) Academic Publishing, The Hague, The Netherlands. pp. 179–190.

    Google Scholar 

  • Scripture, P.N. and McHargue, J.S. 1943. Effect of boron deficiency on the soluble nitrogen and carbohydrate content of alfalfa. Journal of American Society of Agronomy, 35: 988–992.

    CAS  Google Scholar 

  • Scripture, P.N. and McHargue, J.S. 1945. Boron supply in relation to carbohydrate metabolism and distribution in radish. Journal of American Society of Agronomy 37: 360–364.

    CAS  Google Scholar 

  • Shanmjavelu, K.G. 1993. Production technology of Vegetable Crops. Oxford and IBH.

    Google Scholar 

  • Shorrocks, V.M. 1964. Mineral deficiencies in Hevea and associated cover plants. Rubber Research Institute, Kuala Lumpur.

    Google Scholar 

  • Smith, F.W. 1986. Interpretation of plant analysis: concepts and principles. In, “Plant Analysis, An Interpretation Manual”. (eds. Reuter, D.J. and Robinson, J.B.) pp. 1–12.

    Google Scholar 

  • Smith, F.W. and Dolby, G.R. 1977. Derivation of diagnostic indices for assessing the sulphur status of Panicum maximum var trichoglume. Communications in Soil Science and Plant Analysis, 8: 221–240.

    CAS  Google Scholar 

  • Spiller, S.C. 1980. The influence of iron stress on the photosynthetic apparatus of Beta vulgaris. Dissertation Abstracts International B, 41: 1–17.

    Google Scholar 

  • Sprague, H.B. 1964. Hunger signs in Crops. A Symposium. David McKay Company. New York, pp. 461

    Google Scholar 

  • Steinberg, R.A. 1955. Effect of boron deficiency on nicotine formation in tobacco. Plant Physiology, 30: 84–86.

    CAS  Google Scholar 

  • Stiles, W. 1961. Trace Elements in Plant. University Press, Cambridge.

    Google Scholar 

  • Subbiah, B.V. and Asija, G.L. 1956. A rapid procedure for the determination of available nitrogen in soil. Current Science, 25: 259–260.

    CAS  Google Scholar 

  • Syworotkin, G.S. 1958. The boron contents of plants with a latex system. Spurenelements in der Landwirsts Chaff. Academic Verlag, Berlin, 283–288.

    Google Scholar 

  • Tanaka, A. and Yoshida, S. 1970. Nutritional Disorders of Rice Plant in Asia. Technical Bulletins No. 10. International Rice Research Institute, Las Banos, Phillipines.

    Google Scholar 

  • Terry, N. and Low, G. 1982. Leaf chlorophyll content and its relation to the intracellular localization of iron. Journal of plant Nutrition, 5: 301–310.

    CAS  Google Scholar 

  • Thiele, E.H. and Huff, J.W. 1960. Quantitative measurement of lipide peroxidase formation by normal liver mitochondria under various conditions. Archieves in Biochemistry, Biophysics, 88: 203–207.

    CAS  Google Scholar 

  • Thompson, H.C. and Kalley, W.C. 1959. Vegetable Crops. Tata McGraw Hill, India.

    Google Scholar 

  • Thomson, W.W. and Weier, T.E. 1962. The fine structure of chloroplasts from mineral deficient leaves of Phaseolus vulgaris. American Journal of Botany, 49: 1047–1055.

    CAS  Google Scholar 

  • Ulrich, A. 1952. Physiological bases for assessing the nutritional requirements of plants. Annual Review of Plant Physiology, 3: 207–228.

    Article  Google Scholar 

  • Vesk, M., Possingham, J.V. and Mercer, F.V. 1966. The effect of mineral nutrient deficiencies on the structure of the leaf cells of tomato, spinach and maize. Australian Journal of Botany, 14: 1–18.

    Article  CAS  Google Scholar 

  • Viets, F.G., Boawn, L.C. and Crawford, C.L. 1954. Zinc contents and deficiency symptoms of 26 crops grown on a zinc deficient soil. Soil Science, 78: 305–316.

    Google Scholar 

  • Walkley, A. and Black, C.A. 1934. An examination of Degt jareff methods for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29–38.

    CAS  Google Scholar 

  • Wallace, T. 1961. The Diagnosis of Mineral Deficiencies in Plant by Visual Methods. A colour altas and guide. H.M.S.O., London.

    Google Scholar 

  • Whatley, J.M. 1971. Ultrastructural changes in chloroplasts of Phaseolus vulgaris during development under conditions of nutrient deficiency. New Phytology, 70: 725–742.

    CAS  Google Scholar 

  • Williams, S. and Steinberg, R.A. 1959. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Australian Journal of Agricultural Research., 10: 340–352.

    Article  CAS  Google Scholar 

  • Wolf, B. 1974. Improvement in the azomethine-H method for the determination of boron. Communication Soil Science and Plant Analysis, 5: 31–44.

    Google Scholar 

  • Wood, J.G. and Silby, P.M. 1952. Carbonic anhydrase activity in plants in relation to zinc content. Australian Journal of Science Research Series B, 5: 244–255.

    CAS  Google Scholar 

  • Yamazaki, I. And Piette, L.H. 1963. The mechanism of aerobic oxidase reaction catalyzed by peroxidase. Biochemistry Biophysics Acta, 77: 47–64.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chatterjee, C., Dube, B.K. (2004). Nutrient Deficiency Disorders in Vegetables and their Management. In: Mukerji, K.G. (eds) Fruit and Vegetable Diseases. Disease Management of Fruits and Vegetables, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-48575-3_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48575-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1976-0

  • Online ISBN: 978-0-306-48575-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics