Skip to main content

Nano-Silver Toxicity: Emerging Concerns and Consequences in Human Health

  • Chapter
  • First Online:
Nano-Antimicrobials

Abstract

Silver nanoparticles are used in diverse applications due to their unique properties, and thus are rapidly becoming part of our daily life. Silver nano-based products like wound dressings, cosmetics and antimicrobial coatings are now available in the market. However, little is known about their biodistribution and toxicity. The present chapter focuses on the risk associated with the use of silver nanoparticles, route of exposure, and different toxic effects of silver nanoparticles on different systems like nervous system, immunological, respiratory and reproductive systems. Developmental defects, genotoxic effects and toxicity at the microbial level have been reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233: 404–410.

    Article  Google Scholar 

  • Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y (2003) Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome. C J Biochem 134(1): 43–49.

    Google Scholar 

  • Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomateria 25: 4383–4391.

    Article  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179: 93–100.

    Article  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19 255102 doi 10.1088/0957-4484/19/25/255102.

    Google Scholar 

  • Asharani PV, Mun GLK, Hande MP, Valiyaveettil S (2009a) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3: 279–290.

    Article  Google Scholar 

  • Asharani PV, Hande M P, Valiyaveettil S (2009b) Anti-proliferative activity of silver nanoparticles. BMC Cell Bio 10(65): [Online] Available at http://www.biomedcentral.com/1471-2121/10/65. Accessed on 24 July 2010.

  • Bagai I, Rensing C, Blackburn NJ, McEvoy MM (2008) Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 47(44): 11408–11414.

    Article  Google Scholar 

  • Barandiaran J (2007) Regulating Berkeley’s nanotech future. Policy Matters 5(1): 31–38.

    Google Scholar 

  • Barnard AS (2010) One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat Nanotechnol 5: 271–274.

    Article  Google Scholar 

  • Blundell G, Henderson WJ, Price EW (1989) Soil particles in the tissues of the foot in endemic elephantiasis of the lower legs. Ann Trop Med Parasitol 83: 381–385.

    Google Scholar 

  • Boop SK, Lettieri T (2008) Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 8: 8–19.

    Article  Google Scholar 

  • Borm PJA, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles- potential implication for drug delivery. J Nanosci Nanotechnol 4(6): 1–11.

    Google Scholar 

  • Borm PJA, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006a) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90: 23–32.

    Article  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit J, Oberdorster E (2006b) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3: 11. [Online] Available at http://www.particleandfibretoxicology.com/content/3/1/11. Accessed on 29 July 2010.

  • Bosca L, Zeini M, Traves PG, Hortelano S (2005) Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208: 249–258.

    Article  Google Scholar 

  • Benn, TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available socks fabrics. Environ Sci Technol 42(18): 7025–7026.

    Article  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2): 412–419.

    Article  Google Scholar 

  • Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann MC (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116(2): 577–589.

    Article  Google Scholar 

  • Bury NR, Wood CM (1999) Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. Am J Physiol 277: 1385–1391.

    Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112: 13608–13619.

    Article  Google Scholar 

  • Cha K, Hong HW, Choi YG, Lee MJ, Park JH, Chae HK, Ryu G, Myung H (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 30:1893–1899

    Google Scholar 

  • Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aqu Toxicol 94: 320–327.

    Article  Google Scholar 

  • Cereda C, Gabanti E, Corato M, de Silvestri A, Alimonti D, Cova E, Malaspina A, Ceroni M (2006) Increased incidence of FMO1 gene single nucleotide polymorphisms in sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 7: 227–234.

    Article  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176: 1–12.

    Article  Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2): 109–120.

    Article  Google Scholar 

  • Chicheportiche A, Bernardino-Sgherri J, de-Massy B, Dutrillaux B (2007) Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse. J Cell Sci 120: 1733–1742.

    Article  Google Scholar 

  • Clancy AA, Gregoriou Y, Yaehne K, Cramb DT (2010) Measuring properties of nanoparticles in embryonic blood vessels: towards a physicochemical basis for nanotoxicity. Chem Phys Lett 488(4–6): 99–111.

    Article  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852.

    Article  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 1: 326–330.

    Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21: 1166–1170.

    Article  Google Scholar 

  • Corachan M, Tura JM, Campo E, Soley M, Traveria A (1988) Prodoconiosis in equatorial Gunea. Report of two cases from different geographical environments. Trop Geogr Med 40: 359–364.

    Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116: 205–219.

    Article  Google Scholar 

  • Dockery DW, Pope C A III (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15: 107–132.

    Article  Google Scholar 

  • Donaldson K, Stone V, Seaton A, MacNee W (2001) Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109(Suppl 4): 523–527.

    Google Scholar 

  • Fong CC, Zhang Y, Zhang Q, Tzang CH, Fong WF, Wu RS, Yang M (2007) Dexamethasone protects RAW264.7 macrophages from growth arrest and apoptosis induced by H2O2 through alteration of gene expression patterns and inhibition of nuclear factor-kappa B (NF-kappaB) activity. Toxicology 236: 16–28.

    Article  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160: 171–177.

    Article  Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson J (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Bio Eng 3:9 doi:10.1186/1754-1611-3-9

  • Gangloff C (2007) US demand for nanotechnology medical products to approach $53 billion in 2011. [Online] Available at http://www.nanotech-now.com/news.cgi?story_id=21109. Accessed on 29 July 2010.

  • Garcia-Ruiz C, Colell A, ParĂ­s R, FernĂ¡ndez-Checa JC (2000) Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J 14: 847–858.

    Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, SchĂ¼rch S, Kreyling W, Schulz H, Semmler M, Hof VI, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11): 1555–1560.

    Article  Google Scholar 

  • Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7: 2. [Online] Available at http://creativecommons.org/licenses/by/2.0. Accessed on 29 July 2010.

  • George S, Pokhrel S, Xia, T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Madler L, Nel AE (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1): 15–29.

    Article  Google Scholar 

  • Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet doi:10.1136/jmg.2009.066944.

  • Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS (2008) Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechology 19: 1–10.

    Article  Google Scholar 

  • Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9: 353–363.

    Article  Google Scholar 

  • Greulich C, Kittler S, Epple M, Muhr G, Koller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394 (3): 495–502.

    Article  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114(12): 1818–1825.

    Google Scholar 

  • Hill WR, Pillsbury DM (1939) Argyria: The Pharmacology of Silver. Baltimore, MD, Williams & Wilkins, pp. 128–132.

    Google Scholar 

  • Holsapple M, Farland W, Landry T, Monteiro-Riviere N, Carter J, Walker N, Thomas K (2005) Research strategies for safety evaluation of nanomaterials, Part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88(1): 12–17.

    Article  Google Scholar 

  • Hsin Y H, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179: 130–139.

    Article  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicology of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19: 975–983.

    Article  Google Scholar 

  • Ibald-Mulli A, Wichmann HE, Kreyling W, Pters A (2002) Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med 15: 189–201.

    Article  Google Scholar 

  • Ismail IH, Hendzel MJ (2008) The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more?. Environ Mol Mutagen 49: 73–82.

    Article  Google Scholar 

  • Jani PU, McCarthy DE, Florence AT (1994) Titanium dioxide (rutile) particles uptake from the rat GI tract and translocation to systemic organs after oral administration. J Pharm 105: 157–168.

    Google Scholar 

  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19: 857–871.

    Article  Google Scholar 

  • Jones CF, Grainger W (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61: 438–456.

    Article  Google Scholar 

  • Kakkar P, Singh BK (2007) Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305: 235–253.

    Article  Google Scholar 

  • Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15): 6046–6051.

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park Y H, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed: NBM 3: 95–101.

    Article  Google Scholar 

  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM (2008) Twenty-eight-day oral toxicity, genotoxicity and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 20: 575–583.

    Article  Google Scholar 

  • Kim S, Choi JE, Choi J, Chung K, Park K, Yi J, Ryu D (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23: 1076–1084.

    Article  Google Scholar 

  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part and Fibre Toxicol, 7:20.[Online] Available at http://www.particleandfibretoxicology.com/content/7/1/20. Accessed on 13 August 2010.

  • Kalishwaralal K, Banumathi E, Ram Kumar Pandian S, Deepak V, Muniyandi J, Eom SH, Gurunathan S (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 73(1): 51–57.

    Article  Google Scholar 

  • Lanki T, de Hartog JJ, Heinrich J, Hoek G, Janssen NA, Peters A, Stölzel M, Timonen KL, Vallius M, Vanninen E, Pekkanen J (2006) Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA Study. Environ Health Perspect 114: 655–660.

    Article  Google Scholar 

  • Lee H-Y, Choi Y-J, Jung E-J, Yin H-Q, Kwon J-T, Kim J-E, Im H-T, Cho M-H, Kim J-H, Kim H-Y, Lee B-H (2010) Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J Nanopart Res 12: 1567–1578.

    Article  Google Scholar 

  • Lee YS, Kim DW, Lee YH, Oh JH, Yoon S, Choi MS, Lee SK, Kim JW, Lee K, Song CW (2011) Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells. Arch Toxicol doi: 10.1007/s00204-011-0714-1.

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1): 26–49.

    Article  Google Scholar 

  • Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487: 92–96.

    Article  Google Scholar 

  • Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134: 425–439.

    Article  Google Scholar 

  • Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100(2): 140–150.

    Google Scholar 

  • Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390(3): 733–737.

    Article  Google Scholar 

  • Lux report (2008) Nanomaterials state of the market Q3 2008: stealth success, broad impact. [Online] Available at: http://portal.luxresearchinc.com/research/document/3735. Accessed on 24 July 2010.

  • Kakurai M, Demitsu T, Umemoto N, Ohtsuki M, Nakagawa H (2003) Activation of mast cells by silver particles in a patient with localized argyria due to implantation of acupuncture needles. Br J Dermatol 148(4): 822.

    Article  Google Scholar 

  • Margaret Ip, Lui SL, Poon VKM, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vivo comparison. J Med Microbiol 55: 59–63.

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechology 16: 2346–2353.

    Article  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2007) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101: 239–253.

    Article  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Clamydomonas reinhardtii. Environ Sci Technol 42: 8959–8964.

    Article  Google Scholar 

  • Nel A, Xia T, Maedler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761): 622–627.

    Article  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PHM, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164: 1665–1668.

    Google Scholar 

  • Nemmar A, Hoet, PHM, Vanquickenborne, B, Dinsdale D, Thomeer M., Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105: 411–414.

    Article  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health 65(20): 1531–1543.

    Article  Google Scholar 

  • Palmeira CM (2008) In vitro assessment of silver nanoparticles toxicity in hepatic mitochondrial function. EOARD Grand FA8655-07-3047. Final Report. IMAR-Mitochondrial Research Group. Coimbra, Portugal. [Online] Available at http://handle.dtic.mil/100.2/ADA491040. Accessed on 29 July 2010.

  • Park B (2007) Current and Future Applications of Nanotechnology, in Nanotechnology. In: Harrison RM, Hester RE, eds. Consequences for Human Health and the Environment. The Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Peters A, Pope CA III (2002) Cardiopulmonary mortality and air pollution. Lancet 360(9341): 1184–1185.

    Article  Google Scholar 

  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Resp Crit Care Med 155: 1376–1383.

    Google Scholar 

  • Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E (2004) Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15: 321–325.

    Article  Google Scholar 

  • Pflucker F, Wendel V, Hohenberg H, Gärtner E, Will T, Pfeiffer S, Wepf R, Gers-Barlag H (2001) The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 14(Suppl 1): 92–97.

    Google Scholar 

  • Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock RC, Schlager JJ, Hussain SM, Ali SF (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187: 15–21.

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1): 76–83.

    Article  Google Scholar 

  • Rastogi RP, Richam, Sinha RP (2009) Apoptosis: molecular mechanisms and pathogenicity. EXCLI J 8: 155–181.

    Google Scholar 

  • Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181(19): 5891–5897.

    Google Scholar 

  • Roberts RA, Laskin DL, Smith CV, Robertson FM, Allen EMG, Doorn JA, Slikkerk W (2009) Nitrative and oxidative stress in toxicology and disease. Toxicoll Sci 112(1): 4–16.

    Article  Google Scholar 

  • Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1: 1–6.

    Article  Google Scholar 

  • Rosas-HernĂ¡ndez H, JimĂ©nez-Badillo S, MartĂ­nez-Cuevas PP, Gracia-Espino E, Terrones H, Terrones M, Hussain SM, Ali SF, GonzĂ¡lez C (2009) Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett 191(2–3): 305–313.

    Article  Google Scholar 

  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7: 155–160.

    Article  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91: 159–165.

    Article  Google Scholar 

  • Santoro CM, Duchsherer NL, Grainger DW (2007) Antimicrobial efficacy and ocular cell toxicity from silver nanoparticles. Nanobiotechnology 3(2): 55–65.

    Article  Google Scholar 

  • Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R, Barrera EV, Rice-Ficht AC, Wilson BL, Ramesh GT (2007) Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ foreskin cells. J Nanosci Nanotechnol 7: 584–592.

    Google Scholar 

  • Schumacher B, Hofmann K, Boulton S, Gratner A (2001) The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 11: 1722–1727.

    Article  Google Scholar 

  • Sharma HS, Ali SF, Hussain SM, Schlager JJ, Sharma A (2009a) Influence of engineered nanoparticles from metals on the bloodbrain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol 9: 5055–5072.

    Article  Google Scholar 

  • Sharma HS, Ali SF, Tian ZR, Hussain SM, Schlager JJ,Sjoquist PO, Sharma A, Muresanu DF (2009b) Chronic treatment with nanoparticles exacerbate hyperthermia induced blood-brain barrier breakdown, cognitive dysfunction and brain pathology in the rat. Neuroprotective effects of nanowired-antioxidant compound H-290/51. J Nanosci Nanotechnol 9: 5073–5090.

    Article  Google Scholar 

  • Shimizu T, Numata T, Okada Y (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl- channel. Proc Natl Acad Sci 101(17): 6770–6773.

    Article  Google Scholar 

  • Shin S, Ye M, Kim H, Kang H (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7: 1813–1818.

    Article  Google Scholar 

  • Singh S, Khar A (2005) Differential gene expression during apoptosis induced by a serum factor: Role of mitochondrial F0-F1 ATP synthase complex. Apoptosis 10: 1469–1482.

    Article  Google Scholar 

  • Soto K, Carrasco A, Powell TG, Murr LE, Garza KM (2006) Biological effects of nanoparticulate materials. Mat Sci Eng art C 26: 1421–1427.

    Article  Google Scholar 

  • Suksanpaisan L, Susantad T, Smith DR (2009) Characterization of dengue virus entry into HepG2 cells. J Biomed Sci 16: 17. [Online] Available at http://www.jbiomedsci.com/content/16/1/17. Accessed on 28 July 2010.

  • Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20(6): 567–574.

    Article  Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu J (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108(2): 452–461.

    Article  Google Scholar 

  • Thayer AM (2007) Carbon nanotubes by the metric ton. Chem Eng News 85(46): 29–35.

    Article  Google Scholar 

  • Theodore L, Kunz RG (2005) Nanotechnology/ Environmental Overview. In: Theodore L, ed. Nanotechnology: Environmental Implications and Solutions. Hoboken, NJ, John Wiley & Sons Inc., pp. 1–60.

    Chapter  Google Scholar 

  • Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006) Research strategies for safety evaluation of nanomaterials, Part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 91(1): 14–19.

    Article  Google Scholar 

  • Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure sand sensitization in chronic beryllium disease. Environ Health Perspect 111(9): 1202–1208.

    Article  Google Scholar 

  • Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr, Hussain SM, Ali SF (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118(1): 160–70.

    Article  Google Scholar 

  • Tyner KM, Wokovich AM, Doub WH, Buhse LF, Sung Li-Piin, Watson SS, Sadrieh N (2009) Comparing methods for detecting and characterizing metal oxide nanoparticles in unmodified commercial sunscreens. Nanomedicine 4: 145–159.

    Article  Google Scholar 

  • Unfried K, Albrecht C, Klotz LO, von Mikecz A, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1): 52–71.

    Article  Google Scholar 

  • Voetsch B, Jin RC, Bierl C, Deus-Silva L, Camargo EC, Annichino-Bizacchi JM, Handy DE, Loscalzo J (2008) Role of promoter polymorphisms in the plasma glutathione peroxidase (Gpx3) gene as a risk factor for cerebral venous thrombosis. Stroke 39: 303–307.

    Article  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307–310.

    Article  Google Scholar 

  • Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa AM, Mitani H, Spalding MJ, Mason MD (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97: 34–41.

    Article  Google Scholar 

  • Woodrow Wilson International Center for Scholars (2007) Nanotechnology Consumer Products Inventory. [Online] Available via DIALOG http://www.nanotechproject.org/inventories/ consumer/analysis_draft/. Accessed 31 October 2008

  • Wakelyn PJ (1994) Cotton yarn manufacturing. In: Ivester AL, Neefus JD, eds. ILO Encyclopedia of Occupational Health and Safety, 4th ed. International Labour Office, Geneva, Switzerland, pp. 89.9–89.11.

    Google Scholar 

  • Wang, W, Kirsch, T (2006) Annexin V/β5 Integrin Interactions Regulate Apoptosis of Growth Plate Chondrocytes. J Biol Chem 281: 30848–30856.

    Article  Google Scholar 

  • Wichmann H-E, Peters A (2000) Epidemiological evidence of the efects of ultrafine particle exposure. Phil Trans Royal Soc Lond 358: 2751–2769.

    Article  Google Scholar 

  • Wood CM, Hogstrand C, Galvez F, Munger RS (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat Toxicol 35: 93–109.

    Google Scholar 

  • Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2: 385–389.

    Article  Google Scholar 

  • Yamawaki H, Iwai N (2006) Mechanisms underlying nano-sized air-pollution mediated progression of atherosclerosis: carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circ J 70: 129–140.

    Article  Google Scholar 

  • Zhang Y, Sun J (2007) A study on the bio-safety for nano-silver as anti-bacterial materials. Chin J Med Instrum 31: 35–38.

    Google Scholar 

  • Ziche M, Morbidelli L (2000) Nitric oxide in angiogenesis. J Neurooncol 50: 139–148.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Council of Scientific and Industrial Research, New Delhi and Indo-Brazil Joint Research Project funded by Department of Science and Technology, New Delhi, India. The authors thank Professor Anne Anderson, Biology Department, Utah State University, USA for critical suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, I., Duran, N., Rai, M. (2012). Nano-Silver Toxicity: Emerging Concerns and Consequences in Human Health. In: Cioffi, N., Rai, M. (eds) Nano-Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24428-5_18

Download citation

Publish with us

Policies and ethics