Skip to main content
Log in

Mitochondria: a hub of redox activities and cellular distress control

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In their reductionist approach in unraveling phenomena inside the cell, scientists in recent times have focused attention to mitochondria. An organelle with peculiar evolutionary history and organization, it is turning out to be an important cell survival switch. Besides controlling bioenergetics of a cell it also has its own genetic machinery which codes 37 genes. It is a major source of generation of reactive oxygen species, acts as a safety device against toxic increases of cytosolic Ca2+ and its membrane permeability transition is a critical control point in cell death. Redox status of mitochondria is important in combating oxidative stress and maintaining membrane permeability. Importance of mitochondria in deciding the response of cell to multiplicity of physiological and genetic stresses, inter-organelle communication, and ultimate cell survival is constantly being unraveled and discussed in this review. Mitochondrial events involved in apoptosis and necrotic cell death, such as activation of Bcl-2 family proteins, formation of permeability transition pore, release of cytochrome c and apoptosis inducing factors, activation of caspase cascade, and ultimate cell death is the focus of attention not only for cell biologists, but also for toxicologists in unraveling stress responses. Mutations caused by ROS to mitochondrial DNA, its inability to repair it completely and creation of a vicious cycle of mutations along with role of Bcl-2 family genes and proteins has been implicated in many diseases where mitochondrial dysfunctions play a key role. New therapeutic approaches toward targeting low molecular weight compounds to mitochondria, including antioxidants is a step toward nipping the stress in the bud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426:127–128

    PubMed  CAS  Google Scholar 

  2. Scheffler IE (2001) A centaury of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31

    PubMed  CAS  Google Scholar 

  3. Leblanc C, Richard O, Kloareg B et al (1997) Origin and evolution of mitochondria: what have we learnt from red algae? Curr Genet 31:193–207

    PubMed  CAS  Google Scholar 

  4. Margulis L, Chapman MJ (1998) Endosymbioses: cyclical and permanent in evolution. Trends Microbiol 6:342–345

    PubMed  CAS  Google Scholar 

  5. Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Genet Dev 3:884–890

    PubMed  CAS  Google Scholar 

  6. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    PubMed  CAS  Google Scholar 

  7. Barrientos A, Kenyon L, Moraes CT (1998) Human xenomitochondrial cybrids cellular models of mitochondrial complex I deficiency. J Biol Chem 273:14210–14217

    PubMed  CAS  Google Scholar 

  8. Kenyon L, Moraes CT (1997) Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids. Proc Natl Acad Sci USA 94:9131–9135

    PubMed  CAS  Google Scholar 

  9. Pedersen PL (1999) Mitochondrial events in the life and death of animal cells: a brief overview. J Bioenerg Biomembr 31:291–304

    PubMed  CAS  Google Scholar 

  10. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    PubMed  CAS  Google Scholar 

  11. Pedersen PL (1996) Frontiers in ATP synthase research: understanding the relationship between subunit movements and ATP synthesis. J Bioenerg Biomembr 28:389–395

    PubMed  CAS  Google Scholar 

  12. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    PubMed  CAS  Google Scholar 

  13. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    PubMed  CAS  Google Scholar 

  14. Munn EA (1968) On the structure of mitochondria and the value of ammonium molybdate as a negative stain for osmotically sensitive structures. J Ultrastruct Res 25:362–380

    PubMed  CAS  Google Scholar 

  15. Shoffner JM (2001) Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8edn., vol 2. McGraw-Hill, New York, pp 2367–2423

    Google Scholar 

  16. Xia D, Yu CA, Kim H et al (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66

    PubMed  CAS  Google Scholar 

  17. Iwata S, Lee JW, Okada K et al (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71

    PubMed  CAS  Google Scholar 

  18. Iwata S, Ostermeier C, Ludwig B et al (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    PubMed  CAS  Google Scholar 

  19. Tsukihara T, Aoyama H, Yamashita E et al (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069–1074

    PubMed  CAS  Google Scholar 

  20. Brzenzinshi P, Adelroth P (1998) Pathways of proton transfer in cytochrome c oxidase. J Bioenerg Biomemb 30:99–107

    Google Scholar 

  21. Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49

    PubMed  CAS  Google Scholar 

  22. Halliwell B, Gutteridge JMC (1999) In: Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, 936 pp

  23. Halliwell B, Zao K, Whiteman M (1999) Nitric oxide and peroxinitrite. The ugly, the uglier and not so good: a personal view of recent controversies. Free Radic Res 31:651–669

    PubMed  CAS  Google Scholar 

  24. Balazy M, Nigam S (2003) Ageing, lipid modifications and phospholipases—new concepts. Ageing Res Rev 2:209–291

    Google Scholar 

  25. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    PubMed  CAS  Google Scholar 

  26. Brand MD, Affourtit C, Esteves TC et al (2004) Mitochondrial superoxide: production, biological effects and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    PubMed  CAS  Google Scholar 

  27. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and ageing. Free Radic Biol Med 29:222–230

    PubMed  CAS  Google Scholar 

  28. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25:17–26

    PubMed  CAS  Google Scholar 

  29. Genova ML, Pich MM, Biondi A et al (2003) Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. Exp Biol Med 228:506–513

    CAS  Google Scholar 

  30. Inoue M, Sato EF, Nishikawa M et al (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505

    PubMed  CAS  Google Scholar 

  31. Nicholls DG, Ferguson SJ (2002) Bioenergetics, 3rd edn. Academic Press, London, 297 pp

  32. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–507

    PubMed  CAS  Google Scholar 

  33. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    PubMed  CAS  Google Scholar 

  34. Herrero A, Barja G (1997) Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev 98:95–111

    PubMed  CAS  Google Scholar 

  35. Genova ML, Ventura B, Giuliano G et al (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron–sulfur cluster N2. FEBS Lett 505:364–368

    PubMed  CAS  Google Scholar 

  36. Liu R, Li B, Flanagan SW et al (2002) Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J Neurochem 80:488–500

    PubMed  CAS  Google Scholar 

  37. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    PubMed  CAS  Google Scholar 

  38. Nohl H, Stolze K (1992) Ubisemiquinones of the mitochondrial respiratory chain do not interact with molecular oxygen. Free Radic Res Commun 16:409–419

    PubMed  CAS  Google Scholar 

  39. Barja G (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to ageing and longevity. J Bioenerg Biomembr 31:347–366

    PubMed  CAS  Google Scholar 

  40. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    PubMed  CAS  Google Scholar 

  41. Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353:411–416

    PubMed  CAS  Google Scholar 

  42. Han D, Antunes F, Canali R et al (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    PubMed  CAS  Google Scholar 

  43. Loschen G, Flohe L, Chance B (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18:261–264

    PubMed  CAS  Google Scholar 

  44. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    PubMed  CAS  Google Scholar 

  45. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  46. Ramsey JJ, Harper ME, Humble SJ et al (2005) Influence of mitochondrial membrane fatty acid composition on proton leak and H2O2 production in liver. Comp Biochem Physiol B Biochem Mol Biol 140:99–108

    PubMed  Google Scholar 

  47. Jezek P, Hlavata L (2005) Mitochondria in homeostasis of rective oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503

    PubMed  CAS  Google Scholar 

  48. Spiteller G (2002) Are changes of the cell membrane structure causally involved in the ageing process? Ann NY Acad Sci 959:30–44

    Article  PubMed  CAS  Google Scholar 

  49. Broekemeier KM, Ibern JR, LaVan EG et al (2002) Pore formation and uncoupling initiate a Ca2+-independent degradation of mitochondrial phospholipids. Biochemistry 41:7771–7780

    PubMed  CAS  Google Scholar 

  50. Guidarelli A, Cantoni O (2002) Pivotal role of superoxides generated in the mitochondrial respiratory chain in peroxynitrite dependent activation of phospholipase A2. Biochem J 366:307–314

    PubMed  CAS  Google Scholar 

  51. Nakashima I, Liu W, Akhand AA et al (2003) 4-Hydroxynonenal triggers multi step signal transduction cascades for suppression of cellular functions. Mol Aspects Med 24:231–238

    PubMed  CAS  Google Scholar 

  52. Taketo MM, Sonoshita M (2002) Phospholipase A2 and apoptosis. Biochim Biophys Acta 1585:72–76

    PubMed  CAS  Google Scholar 

  53. William SD, Gottlieb RA (2002) Inhibition of mitochondrial calcium-independent phospholipase A2 (iPLA2) attenuates mitochondrial phospholipid loss and is cardioprotective. Biochem J 362:23–32

    Google Scholar 

  54. Gutteridge JMC, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look for the future. Ann NY Acad Sci 899:136–147

    Article  PubMed  CAS  Google Scholar 

  55. Poli G, Schaur RJ (2000) 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 50:315–321

    PubMed  CAS  Google Scholar 

  56. Yang Y, Sharma R, Sharma A et al (2003) Lipid peroxidation and cell cycle signaling: 4-Hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol 50:319–336

    PubMed  CAS  Google Scholar 

  57. Alvarez S, Valdez LB, Zaobornyj T et al (2003) Oxygen dependence of mitochondrial nitric oxide synthase activity. Biochem Biophys Res Commun 305:771–775

    PubMed  CAS  Google Scholar 

  58. Haynes V, Elfering S, Traaseth N et al (2004) Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation. J Bioenerg Biomembr 36:341–346

    PubMed  CAS  Google Scholar 

  59. Palacois-Callender M, Quintero M, Hollis VS et al (2004) Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci USA 101:7630–7635

    Google Scholar 

  60. Radi R, Cassina A, Hodara R et al (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464

    PubMed  CAS  Google Scholar 

  61. Borutaite V, Morkuniene R, Brown GC (1999) Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca2+-induced inhibition of substrate oxidation. Biochim Biophys Acta 1453:41–48

    PubMed  CAS  Google Scholar 

  62. Packer MA, Murphy MP (1994) Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Lett 345:237–240

    PubMed  CAS  Google Scholar 

  63. Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228

    PubMed  CAS  Google Scholar 

  64. Trump BF, Berezesky IK, Sato T et al (1984) Cell calcium, cell injury and cell death. Env Health Perspec 57:281–287

    CAS  Google Scholar 

  65. Fiskum G (1984) Physiological aspect of mitochondrial calcium transport. In: Sigel H (ed) Metal ions in biological systems-calcium and its role in biology, vol 17. Marcel Dekker Inc., New York, pp 187–213

    Google Scholar 

  66. Carafoli E (1987) intracellular calcium homeostasis. Ann Rev Biochem 56:395–433

    PubMed  CAS  Google Scholar 

  67. Kappus H (1985) Lipid peroxidation: mechanism, analysis, enzymology and biological relevance. In: Sies H (ed) Oxidative stress. Academic Press, New York, pp 273–290

    Google Scholar 

  68. Comporti M (1989) Three models of free radical induced cell injury. Chem Biol Interact 72:1–56

    PubMed  CAS  Google Scholar 

  69. Reed DJ, Pascoe GA, Thomas CE (1990) Extracellular calcium effects on cell viability and thiol homeostasis. Environ Health Perspect 84:113–120

    PubMed  CAS  Google Scholar 

  70. Mehrotra S, Kakkar P, Vishwanathan PN (1991) Mitochondrial damage by active oxygen species in vitro. Free Radic Biol Med 10:277–285

    PubMed  CAS  Google Scholar 

  71. Kakkar P, Mehrotra S, Vishwanathan PN (1992) Interrelation of active oxygen species, membrane damage and altered calcium function. Mol Cell Biochem 111:11–15

    PubMed  CAS  Google Scholar 

  72. Mehrotra S, Vishwanathan PN, Kakkar P (1993) Influence of some biological response modifiers on swelling of rat liver mitochondria in vitro. Mol Cell Biochem 124:101–106

    PubMed  CAS  Google Scholar 

  73. Castilho RF, Kowaltowshi AJ, Meinicke AR et al (1995) Oxidative damage of mitochondria induced by Fe (II) citrate or t-Butylhydroperoxide in the presence of Ca2+: effect of Co-Q redox state. Free Radic Biol Med 18:55–59

    PubMed  CAS  Google Scholar 

  74. Kakkar P, Mehrotra S, Vishwanathan PN (1996) t-BHP induced in vitro swelling of rat liver mitochondria. Mol Cell Biochem 154:39–45

    PubMed  CAS  Google Scholar 

  75. Wyatt I, Gyte A, Mainwaring G et al (1996) Glutathione depletion in the liver and brain produced by 2-Chloropropionic acid: relevance to cerebellar gremile cell necrosis. Arch Toxicol 70:380–389

    PubMed  CAS  Google Scholar 

  76. Kakkar P, Mehrotra S, Vishwanathan PN (1998) Influence of antioxidants on the peroxidative swelling of mitochondria in vitro. Cell Biol Toxicol 14:313–321

    PubMed  CAS  Google Scholar 

  77. DeGrey AD (2002) HO2*: the forgotten radical. DNA Cell Biol 21:251–257

    CAS  Google Scholar 

  78. Melov S (2000) Mitochondrial oxidative stress: physiologic consequences and potential for a role in ageing. Ann NY Acad Sci 908:219–225

    Article  PubMed  CAS  Google Scholar 

  79. Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    PubMed  CAS  Google Scholar 

  80. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  CAS  Google Scholar 

  81. Vasquez-Vivar J, Kalyanaraman B, Kennedy MC (2000) Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J Biol Chem 275:14064–14069

    PubMed  CAS  Google Scholar 

  82. Halliwell B, Gutteridge JMC, Aruoma OI (1987) The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    PubMed  CAS  Google Scholar 

  83. Ozawa T (1999) Mitochondrial genome mutation in cell death and ageing. J Bioenerg Biomembr 31:377–390

    PubMed  CAS  Google Scholar 

  84. Fernandez-Checa JC (2003) Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 304:471–479

    PubMed  CAS  Google Scholar 

  85. Wood ZA, Schroeder E, Harris JR et al (2003) Structure, mechanism, and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    PubMed  CAS  Google Scholar 

  86. Nomura K, Imai H, Koumura T et al (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351:183–193

    PubMed  CAS  Google Scholar 

  87. Yant LJ, Ran Q, Rao L et al (2003) The selenoprotein GPx4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    PubMed  CAS  Google Scholar 

  88. Wang HP, Schafer FQ, Goswami PC et al (2003) Phospholipid hydroperoxide glutathione peroxidase induces a delay in G1 of the cell cycle. Free Radic Res 37:621–630

    PubMed  CAS  Google Scholar 

  89. Tanaka T, Nakamura H, Nishiyama A et al (2001) Redox regulation by thioredoxin superfamily; protection against oxidative stress and ageing. Free Radic Res 33:851–855

    Google Scholar 

  90. Tanaka T, Hosoi F, Yamaguchi-Iwai Y et al (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 21:1695–1703

    PubMed  CAS  Google Scholar 

  91. Radi R, Turrens JF, Chang LY et al (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034

    PubMed  CAS  Google Scholar 

  92. Garciya-Ruiz C, Moralez A, Colell A et al (1995) Feeding S-adenosyl-l-methionine attenuates both ethanol induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology 21:207–214

    Google Scholar 

  93. Martensson J, Lai JCK, Meister A (1990) High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci USA 87:7185–7189

    PubMed  CAS  Google Scholar 

  94. Lash LH, Putt DA, Matherly LH (2002) Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter. J Pharmacol Exp Ther 303:476–486

    PubMed  CAS  Google Scholar 

  95. Coll A, Colell A, Garciya-Ruiz C et al (2003) Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology 38:692–702

    PubMed  CAS  Google Scholar 

  96. Raza H, Robin MA, Fang JK et al (2002) Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 36:44–55

    Google Scholar 

  97. Hattori F, Murayama N, Noshita T et al (2003) Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J Neurochem 86:860–868

    PubMed  CAS  Google Scholar 

  98. Cannon B, Nedergaard J (1985) The biochemistry of an inefficient tissue: brown adipose tissue. Essays Biochem 20:110–164

    PubMed  CAS  Google Scholar 

  99. Clapham JC, Arch JR, Chapman H et al (2000) Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406:415–418

    PubMed  CAS  Google Scholar 

  100. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660

    PubMed  CAS  Google Scholar 

  101. Echtay KS, Roussel D, St-Pierre J et al (2002a) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99

    PubMed  CAS  Google Scholar 

  102. Echtay KS, Murphy MP, Smith RA et al (2002b) Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem 277:47129–47135

    PubMed  CAS  Google Scholar 

  103. Mattiasson G, Shamloo M, Gido G et al (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068

    PubMed  CAS  Google Scholar 

  104. Lemasters JJ, Nieminen AL, Qia T et al (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177–196

    PubMed  CAS  Google Scholar 

  105. Lemasters JJ, Quian T, Bradham CA et al (1999) Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. Bioenerg Biomembr 31:305–319

    CAS  Google Scholar 

  106. DiLisa F, Menabo R, Canton M et al (1998) Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. Biochim Biophys Acta 1366:69–78

    CAS  Google Scholar 

  107. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit J Cancer 26:239–245

    PubMed  CAS  Google Scholar 

  108. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    PubMed  CAS  Google Scholar 

  109. Nunez G, Benedict MA, Hu Y et al (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237–3245

    PubMed  Google Scholar 

  110. Liu X, Kim CN, Yang J et al (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    PubMed  CAS  Google Scholar 

  111. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  112. Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366:151–165

    PubMed  CAS  Google Scholar 

  113. Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    PubMed  CAS  Google Scholar 

  114. Montal M (1998) Mitochondria, glutamate neurotoxicity and the death cascade. Biochim Biophys Acta 1366:113–126

    PubMed  CAS  Google Scholar 

  115. Reed JC, Jurgensmeier M, Matsuyama S (1998) Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366:127–137

    PubMed  CAS  Google Scholar 

  116. Cory S, Vaux DL, Strasser A et al (1999) Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res 59:1685–1692

    Google Scholar 

  117. Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693–1700

    Google Scholar 

  118. Srinivasula SM, Ahmad M, Ferandes-Alnemri Litwack G et al (1996) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93:14486–14491

    PubMed  CAS  Google Scholar 

  119. Luo X, Budihardjo I, Zou H et al (1998) Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    PubMed  CAS  Google Scholar 

  120. Li H, Kolluri SK, Gu J et al (2000) Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289:1159–1164

    PubMed  CAS  Google Scholar 

  121. Kirsch DG, Doseff A, Chau BN et al (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274:21155–21161

    PubMed  CAS  Google Scholar 

  122. Harman D (1956) Ageing: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  123. Miquel J, Economos AC, Fleming JE et al (1980) Mitochondrial role in cell ageing. Exp Gerontol 15:575–591

    PubMed  CAS  Google Scholar 

  124. Miquel J, Fleming JE (1984) A two-step hypothesis on the mechanisms of in vitro cell ageing: cell differentiation followed by intrinsic mitochondrial mutagenesis. Exp Gerontol 19:31–36

    PubMed  CAS  Google Scholar 

  125. Richter C (1988) Do mitochondrial DNA fragments promote cancer and ageing? FEBS Lett 24:1–5

    Google Scholar 

  126. Ozawa T (1997) Genetic and functional changes in mitochondria associated with ageing. Physiol Rev 77:425–464

    PubMed  CAS  Google Scholar 

  127. Ozawa T (1995) Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochem Biophys Acta 1271:177–189

    PubMed  Google Scholar 

  128. Chen JJ, Yu BP (1994) Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med 17:411–418

    PubMed  CAS  Google Scholar 

  129. Laganiere S, Yu BP (1993) Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology 39:7–18

    PubMed  CAS  Google Scholar 

  130. Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    PubMed  CAS  Google Scholar 

  131. Paradies G, Ruggiero FM, Petrosillo G et al (1998) Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett 424:155–158

    PubMed  CAS  Google Scholar 

  132. Lippe G, Comelli M, Mazzilis D et al (1991) The inactivation of mitochondrial F1 ATPase by H2O2 is mediated by iron ions not tightly bound in the protein. Biochem Biophys Res Commun 181:764–770

    PubMed  CAS  Google Scholar 

  133. Sohal RS, Dubey A (1994) Mitochondrial oxidative damage, hydrogen peroxide release and ageing. Free Radic Biol Med 16:621–626

    PubMed  CAS  Google Scholar 

  134. Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during ageing. Proc Natl Acad Sci USA 95:12896–12901

    PubMed  CAS  Google Scholar 

  135. Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during ageing targets mitochondrial aconitase. Proc Natl Acad Sci USA 94:11168–11172

    PubMed  CAS  Google Scholar 

  136. Linnane AW, Marsuki S, Ozawa T et al (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645

    PubMed  CAS  Google Scholar 

  137. Wallace DC (1992) Mitochondrial genetics: a paradigm for ageing and degenerative diseases? Science 256:628–632

    PubMed  CAS  Google Scholar 

  138. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    PubMed  CAS  Google Scholar 

  139. Anson RM, Croteau DL, Stierum RH et al (1998) Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acid Res 26:662–668

    PubMed  CAS  Google Scholar 

  140. Bohr VA, Anson RM (1999) Mitochondrial DNA repair pathways. J Bioenerg Biomemb 31:391–398

    CAS  Google Scholar 

  141. Yoneda M, Katsumata K, Hayakawa M et al (1995) Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun 209:723–729

    PubMed  CAS  Google Scholar 

  142. Van-Remmen H, Richardson A (2001) Oxidative damage to mitochondria and ageing. Exp Gerontol 36:957–968

    PubMed  CAS  Google Scholar 

  143. Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412

    PubMed  CAS  Google Scholar 

  144. Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with ageing in mammalian cells. Free Radic Biol Med 32:804–812

    PubMed  CAS  Google Scholar 

  145. Dizdaroglu M (1991) Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med 10:225–242

    PubMed  CAS  Google Scholar 

  146. Hayakawa M, Torii K, Sugiyama S et al (1991) Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179:1023–1029

    PubMed  CAS  Google Scholar 

  147. Shigenaga MK, Ames BN (1991) Assays for 8-hydroxy-2′-deoxyguanosine: a biomarker of in vivo oxidative DNA damage. Free Radic Biol Med 10:211–216

    PubMed  CAS  Google Scholar 

  148. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    PubMed  CAS  Google Scholar 

  149. Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277:38079–38086

    PubMed  CAS  Google Scholar 

  150. Riobo NA, Melani M, Sanjuan N et al (2002) The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. J Biol Chem 277:42447–42455

    PubMed  CAS  Google Scholar 

  151. Carreras MC, Peralta JG, Converso DP et al (2001) Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O2 uptake. Am J Physiol Heart Circ Physiol 281:H2282–H2288

    PubMed  CAS  Google Scholar 

  152. Lacza Z, Puskar M, Figueroa JP et al (2001) Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia. Free Radic Biol Med 31:1609–1615

    PubMed  CAS  Google Scholar 

  153. Escames G, Leon J, Macias M et al (2003) Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J 17:932–934

    PubMed  CAS  Google Scholar 

  154. Brodsky SV, Gao S, Li H et al (2002) Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am J Physiol Heart Circ Physiol 283:H2130–H2139

    PubMed  CAS  Google Scholar 

  155. Bustamante J, Bersier G, Badin RA et al (2002) Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis. Nitric Oxide 6:333–341

    PubMed  CAS  Google Scholar 

  156. Ghafourifar P, Schenk U, Klein SD et al (1999) Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 274:31185–31188

    PubMed  CAS  Google Scholar 

  157. Colavecchia M, Christie LN, Kanwar YS et al (2003) Functional consequences of thyroid hormone-induced changes in the mitochondrial protein import pathway. Am J Physiol Endocrinol Metab 284:E29–E35

    PubMed  CAS  Google Scholar 

  158. Schneider JJ, Hood DA (2000) Effect of thyroid hormone on mtHsp70 expression, mitochondrial import and processing in cardiac muscle. J Endocrinol 165:91–97

    Google Scholar 

  159. Attardi G, Schatz G (2003) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333

    Google Scholar 

  160. Chandel NS, Schumacker PT (2000) Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 88:1880–1889

    PubMed  CAS  Google Scholar 

  161. Duranteau J, Chandel NS, Kulisz A et al (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273:11619–11624

    PubMed  CAS  Google Scholar 

  162. Poderoso JJ, Peralta JG, Lisdero CL et al (1998) Nitric oxide regulates oxygen up-take and hydrogen peroxide release by isolated beating rat heart. Am J Physiol 274:C112–C119

    PubMed  CAS  Google Scholar 

  163. Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: An alternative function for cytochrome c oxidase. Free Radic Biol Med 32:370–374

    PubMed  CAS  Google Scholar 

  164. Bandy B, Davidson AJ (1990) Mitochondrial mutation may increase oxidative stress: implications for carcinogenesis and ageing? Free Radic Biol Med 8:523–539

    PubMed  CAS  Google Scholar 

  165. Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    PubMed  CAS  Google Scholar 

  166. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    PubMed  CAS  Google Scholar 

  167. Wallace DC, Singh G, Lott MT et al (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    PubMed  CAS  Google Scholar 

  168. Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol 287:C817–C833

    CAS  Google Scholar 

  169. Decaudin D, Marzo I, Brenner C et al (1998) Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy. Int J Oncol 12:141–152

    PubMed  CAS  Google Scholar 

  170. Lamson DW, Brignall MS (1999) Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern Med Rev 4:303

    Google Scholar 

  171. Stavrovskaya IG, Kristal BS (2005) The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med 38:687–697

    PubMed  CAS  Google Scholar 

  172. Larson NG, Luft R (1999) Revolution in mitochondrial medicine. FEBS Lett 455:199–202

    Google Scholar 

  173. Murphy MP, Smith R (2000) Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev 41:235–250

    PubMed  CAS  Google Scholar 

  174. Weissig V, Cheng SM, D’Souza GGM (2004) Mitochondrial pharmaceutics. Mitochondrion 3:229–244

    PubMed  CAS  Google Scholar 

  175. Muratovska A, Lightowlers RN, Taylor RW et al (2001) Targeting large molecules to mitochondria. Adv Drug Deliv Rev 49:189–198

    PubMed  CAS  Google Scholar 

  176. Weiss MJ, Wong JR, Ha CS et al (1987) Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc Natl Acad Sci USA 84:5444–5448

    PubMed  CAS  Google Scholar 

  177. Liberman EA, Topaly VP, Tsofina LM et al (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076–1078

    PubMed  CAS  Google Scholar 

  178. Chen LB, Summerhayes IC, Johnson LV et al (1982) Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol 46:141–155

    PubMed  Google Scholar 

  179. Morgan J, Whitaker JE, Oseroff AR (1998) GRP78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye Victoria blue BO. Photochem Photobiol 67:155–164

    PubMed  CAS  Google Scholar 

  180. Smith RA, Porteous CM, Coulter CV et al (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263:709–716

    PubMed  CAS  Google Scholar 

  181. Kelso GF, Porteous CM, Coulter CV et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    PubMed  CAS  Google Scholar 

  182. Adlam VJ, Harrison JC, Porteous CM et al (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095

    PubMed  CAS  Google Scholar 

  183. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    PubMed  CAS  Google Scholar 

  184. Mugesh G, du-Mont WW, Sies H (2001) Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101:2125–2179

    PubMed  CAS  Google Scholar 

  185. Filipovska A, Kelso GF, Brown SE et al (2005) Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J Biol Chem 280:24113–24126

    PubMed  CAS  Google Scholar 

  186. Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762:256–265

    PubMed  CAS  Google Scholar 

  187. Orlowski JP (1999) Whatever happened to Reye’s syndrome? Did it ever really exist? Crit Care Med 27:1582–1587

    PubMed  CAS  Google Scholar 

  188. Larsen SU (1997) Reye’s syndrome. Med Sci Law 37:235–241

    PubMed  CAS  Google Scholar 

  189. Trost LC, Lemasters JJ (1997) Role of the mitochondrial permeability transition in salicylate toxicity to cultured rat hepatocytes: implications for the pathogenesis of Reye’s syndrome. Toxicol Appl Pharmacol 147:431–441

    PubMed  CAS  Google Scholar 

  190. Mansouri A, Gaou I, Fromenty B et al (1997) Premature oxidative ageing of hepatic mitochondrial DNA in Wilson’s disease. Gastroenterol 113:599–605

    CAS  Google Scholar 

  191. Davie CA, Schapira AH (2002) Wilson disease. Int Rev Neurobiol 53:175–190

    Article  PubMed  CAS  Google Scholar 

  192. Gu M, Cooper JM, Butler P et al (2000) Oxidative-phosphorylation defects in liver of patients with Wilson’s disease. Lancet 356:469–474

    PubMed  CAS  Google Scholar 

  193. Pietrangelo A (1998) Iron, oxidative stress and liver fibrogenesis. J Hepatol 28:8–13

    PubMed  CAS  Google Scholar 

  194. Almeida AM, Bertoncini CR, Borecky J et al (2006) Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate. An Acad Bras Cienc 78:505–514

    PubMed  CAS  Google Scholar 

  195. Corradini E, Ferrara F, Pietrangelo A (2004) Iron and the liver. Pediatr Endocrinol Rev 2:245–248

    PubMed  Google Scholar 

  196. Tokarev IuN, Settarova DA (1987) Mechanism of action and clinical manifestations of overload of the body with iron in hereditary hemochromatosis. Gematol Transfuziol 32:51–57

    PubMed  Google Scholar 

  197. Das K, Kar P (2005) Non-alcoholic steatohepatitis. J Assoc Physicians India 53:195–199

    PubMed  CAS  Google Scholar 

  198. Mitsuyoshi H, Itoh Y, Okanoue T (2006) Role of oxidative stress in non-alcoholic steatohepatitis. Nippon Rinsho 64:1077–1082

    PubMed  Google Scholar 

  199. Pessayre D, Fromenty B, Mansouri A (2004) Mitochondrial injury in steatohepatitis. Eur J Gastroenterol Hepatol 16:1095–1105

    PubMed  CAS  Google Scholar 

  200. Rotig A, Bourgeron T, Chretien D et al (1995) Spectrum of mitochondrial DNA rearrangement in the Pearson’s marrowpancreas syndrome. Hum Mol Genet 4:1327–1330

    PubMed  CAS  Google Scholar 

  201. Gilbert RD, Emms M (1996) Pearson’s syndrome presenting with Fanconi syndrome. Ultrastruct Pathol 20:473–475

    PubMed  CAS  Google Scholar 

  202. van-de-Corput MP, van-de-Ouweland JM, Dirks RW et al (1997) Detection of mitochondrial DNA deletions in human skin fibroblasts of patients with Pearson’s syndrome by two-color fluorescence in situ hybridization. J Histochem Cytochem 45:55–61

    PubMed  CAS  Google Scholar 

  203. Wong LJ, Yim D, Bai RK et al (2006) A novel mutation in the mitochondrial tRNA(Ser(AGY)) gene associated with mitochondrial myopathy, encephalopathy, and complex I deficiency. J Med Genet 43:e46

    PubMed  Google Scholar 

  204. Fujii K, Tanabe Y, Kobayashi K et al (2005) Detection of 14-3-3 protein in the cerebrospinal fluid in mitochondrial encephalopathy with lactic acidosis and stroke-like episodes. J Neurol Sci 239:115–118

    PubMed  CAS  Google Scholar 

  205. Sarnat HB, Marin-Garcia J (2005) Pathology of mitochondrial encephalomyopathies. Can J Neurol Sci 32:152–166

    PubMed  Google Scholar 

  206. Cormio A, Milella F, Vecchiet J et al (2005) Mitochondrial DNA mutations in RRF of healthy subjects of different age. Neurobiol Ageing 26:655–664

    CAS  Google Scholar 

  207. Martin-Kleiner I, Gabrilovac J, Bradvica M et al (2006) Leber’s hereditary optic neuroretinopathy (LHON) associated with mitochondrial DNA point mutation G11778A in two Croatian families. Coll Antropol 30:171–174

    PubMed  Google Scholar 

  208. Abu-Amero KK, Bosley TM (2006) Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Invest Ophthalmol Vis Sci 47:4211–4220

    PubMed  Google Scholar 

  209. Li R, Qu J, Zhou X et al (2006) The mitochondrial tRNA(Thr) A15951G mutation may influence the phenotypic expression of the LHON-associated ND4 G11778A mutation in a Chinese family. Gene 376:79–86

    PubMed  CAS  Google Scholar 

  210. Qu J, Li R, Zhou X et al (2006) The novel A4435G mutation in the mitochondrial tRNAMet may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation. Invest Ophthalmol Vis Sci 47:475–483

    PubMed  Google Scholar 

  211. Park SB, Ma KT, Kook KH et al (2004) Kearns-Sayre syndrome-3 case reports and review of clinical feature. Yonsei Med J 45:727–735

    PubMed  Google Scholar 

  212. Mahata B, Bhattacharyya SN, Mukherjee S et al (2002) Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA. J Biol Chem 80:5141–5151

    Google Scholar 

Download references

Acknowledgements

The author’s are grateful to Director, ITRC for his interest in this work. One of the author’s, Mr Brijesh Kumar Singh, is thankful to CSIR for the grant of Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Kakkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakkar, P., Singh, B.K. Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305, 235–253 (2007). https://doi.org/10.1007/s11010-007-9520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9520-8

Keywords

Navigation