Skip to main content
Log in

Face features and face configurations both contribute to visual crowding

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

Crowding refers to the inability to recognize an object in peripheral vision when other objects are presented nearby (Whitney & Levi Trends in Cognitive Sciences, 15, 160–168, 2011). A popular explanation of crowding is that features of the target and flankers are combined inappropriately when they are located within an integration field, thus impairing target recognition (Pelli, Palomares, & Majaj Journal of Vision, 4(12), 12:1136–1169, 2004). However, it remains unclear which features of the target and flankers are combined inappropriately to cause crowding (Levi Vision Research, 48, 635–654, 2008). For example, in a complex stimulus (e.g., a face), to what extent does crowding result from the integration of features at a part-based level or at the level of global processing of the configural appearance? In this study, we used a face categorization task and different types of flankers to examine how much the magnitude of visual crowding depends on the similarity of face parts or of global configurations. We created flankers with face-like features (e.g., the eyes, nose, and mouth) in typical and scrambled configurations to examine the impacts of part appearance and global configuration on the visual crowding of faces. Additionally, we used “electrical socket” flankers that mimicked first-order face configuration but had only schematic features, to examine the extent to which global face geometry impacted crowding. Our results indicated that both face parts and configurations contribute to visual crowding, suggesting that face similarity as realized under crowded conditions includes both aspects of facial appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It is worth noting that studies have shown that certain facial features (e.g., the eyes, the eyebrows, the mouth, and the face outline) play more influential roles in gender discrimination than do others (Brown & Perrett, 1993; Dupuis-Roy, Fortin, Fiset, & Gosselin, 2009; Yamaguchi, Hirukawa, & Kanazawa, 1995). For example, Dupuis-Roy et al. had participants categorize the gender of a face presented behind a gray mask punctured by randomly located Gaussian apertures (the so-called “bubble mask”). They found that the availability of the eyes, the eyebrows, and the mouth was positively correlated with participants’ gender categorization performance, indicating an influential role of these facial features in gender categorization.

  2. We chose the 6° target eccentricity on the basis of previous crowding studies. For example, Farzin et al. (2009) presented target faces at eccentricities of 0°, 3°, 6°, and 10°, and showed a significant crowding effect only when targets were presented at the 6° eccentricity.

  3. Paired-samples t tests comparing the no-flanker condition with the Chinese character flanker condition in the periphery showed no significant differences [t(24) =1.79, p = .09; t(24) =0.34, p = .74; and t(24) =0.76, p = .46, for Exps. 1, 2, and 3, respectively].

  4. We used one-tailed p values for this and the next test because we hypothesized that line-drawn face flankers, which retained both global and local facial features, would cause more crowding than either scrambled face or electrical socket flankers.

References

  • Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162.

    Article  PubMed  Google Scholar 

  • Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistical model of peripheral vision explains visual crowding. Journal of Vision, 9(12), 13:1–9 doi:10.1167/9.12.13

  • Banno, H., & Saiki, J. (2012). Calculation of the mean circle size does not circumvent the bottleneck of crowding. Journal of Vision, 12(11), 13:1–15. doi:10.1167/12.11.13

  • Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernard, J.-B., & Chung, S. T. L. (2011). The dependence of crowding on flanker complexity and targetflanker similarity. Journal of Vision, 11(8), 1:116. doi:10.1167/11.8.1

  • Bouma, H. (1973). Visual interference in the parafoveal recognition of initial and final letters of words. Vision Research, 13, 767–782.

    Article  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357

    Article  PubMed  Google Scholar 

  • Brown, E., & Perrett, D. I. (1993). What gives a face its gender? Perception, 22, 829–840.

    Article  PubMed  Google Scholar 

  • Chung, S., Levi, D., & Legge, G. (2001). Spatial frequency and contrast properties of crowding. Vision Research, 41, 1833–1850.

    Article  PubMed  Google Scholar 

  • Dupuis-Roy, N., Fortin, I., Fiset, D., & Gosselin, F. (2009). Uncovering gender discrimination cues in a realistic setting. Journal of Vision, 9(2), 10:1–8. doi:10.1167/9.2.10

  • Faivre, N., & Kouider, S. (2011). Multi-feature objects elicit nonconscious priming despite crowding. Journal of Vision, 11(3), 2:1–10. doi:10.1167/11.3.2

  • Farzin, F., Rivera, S. M., & Whitney, D. (2009). Holistic crowding of Mooney faces. Journal of Vision, 9(6), 18:1–15. doi:10.1167/9.6.18

  • Fischer, J., & Whitney, D. (2011). Object-level visual information gets through the bottleneck of crowding. Journal of Neurophysiology, 106, 1389–1398.

    Article  PubMed Central  PubMed  Google Scholar 

  • Flevaris, A. V., Robertson, L. C., & Bentin, S. (2008). Using spatial frequency scales for processing face features and face configuration: An ERP analysis. Brain Research, 1194, 100–109.

    Article  PubMed  Google Scholar 

  • Greenwood, J. A., Bex, P. J., & Dakin, S. C. (2010). Crowding changes appearance. Current Biology, 20, 496–501.

    Article  PubMed Central  PubMed  Google Scholar 

  • Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17, R751–R753.

    Article  PubMed  Google Scholar 

  • Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35, 718–734. doi:10.1037/a0013899

    PubMed Central  PubMed  Google Scholar 

  • Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223–233. doi:10.1016/S1364-6613(00)01482-0

    Article  PubMed  Google Scholar 

  • Hermann, M. J., Ehlis, A. C., Ellgring, H., & Fallgatter, A. J. (2005). Early stages (P100) of face perception in humans as measured with event-related potentials (ERPs). Journal of Neural Transmission, 112, 1073–1081.

    Article  Google Scholar 

  • Itier, R. J., Van Roon, P., & Alain, C. (2011). Species sensitivity of early face and eye processing. NeuroImage, 54, 705–713. doi:10.1016/j.neuroimage.2010.07.031

    Article  PubMed Central  PubMed  Google Scholar 

  • Kooi, F. L., Toet, A., Tripathy, S. P., & Levi, D. M. (1994). The effect of similarity and duration on spatial interaction in peripheral vision. Spatial Vision, 8, 255–279.

    Article  PubMed  Google Scholar 

  • Kouider, S., Berthet, V., & Faivre, N. (2011). Preference is biased by crowded facial expressions. Psychological Science, 22, 184–189.

    Article  PubMed  Google Scholar 

  • Levi, D. M. (2008). Crowding—an essential bottleneck for object recognition: A mini-review. Vision Research, 48, 635–654. doi:10.1016/j.visres.2007.12.009

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu, J., Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception: An MEG study. Nature Neuroscience, 5, 910–916.

    Article  PubMed  Google Scholar 

  • Liu, J., Harris, A., & Kanwisher, N. (2010). Perception of face parts and face configurations: An fMRI study. Journal of Cognitive Neuroscience, 22, 203–211. doi:10.1162/jocn.2009.21203

    Article  PubMed Central  PubMed  Google Scholar 

  • Louie, E. G., Bressler, D. W., & Whitney, D. (2007). Holistic crowding: Selective interference between configural representations of faces in crowded scenes. Journal of Vision, 7(2), 24:1–11. doi:10.1167/7.2.24

  • Martelli, M., Majaj, N., & Pelli, D. (2005). Are faces processed like words? A diagnostic test for recognition by parts. Journal of Vision, 5(1), 6:58–70. doi:10.1167/5.1.6

  • Nichols, D. F., Betts, L. R., & Wilson, H. R. (2010). Decoding of faces and face components in face-sensitive human visual cortex. Frontiers in Psychology, 1, 28. doi:10.3389/fpsyg.2010.00028

    PubMed Central  PubMed  Google Scholar 

  • Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4, 739–744.

    Article  PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi:10.1163/156856897X00366

    Article  PubMed  Google Scholar 

  • Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, 4(12), 12:1136–1169. doi:10.1167/4.12.12

  • Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11, 1129–1135. doi:10.1038/nn.2187

    Article  PubMed Central  PubMed  Google Scholar 

  • Pitcher, D., Walsh, V., Yovel, G., & Duchaine, B. (2007). TMS evidence for the involvement of the right occipital face area in early face processing. Current Biology, 17, 1568–1573.

    Article  PubMed  Google Scholar 

  • Pitcher, D., Walsh, V., & Duchaine, B. (2011). The role of the occipital face area in the cortical face perception network. Experimental Brain Research, 209, 481–493.

    Article  PubMed  Google Scholar 

  • Rosenholtz, R. (2011). What your visual systems sees where you are not looking. In B. E. Rogowitz & T. N. Pappas (Eds.), Proceedings of SPIE: Human Vision and Electronic Imaging XVI. Bellingham, WA: SPIE. doi:10.1117/12.876659

    Google Scholar 

  • Schiltz, C., & Rossion, B. (2006). Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 32, 1385–1394. doi:10.1016/j.neuroimage.2006.05.037

    Article  PubMed  Google Scholar 

  • van den Berg, R., Roerdink, J. B. T. M., & Cornelissen, F. W. (2007). On the generality of crowding: Visual crowding in size, saturation, and hue compared to orientation. Journal of Vision, 7(2), 14:1–11. doi:10.1167/7.2.14

  • Wallace, J. W., & Tjan, B. S. (2011). Object crowding. Journal of Vision, 11(6), 19:1–17. doi:10.1167/11.6.19

  • Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15, 160–168. doi:10.1016/j.tics.2011.02.005

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi, M. K., Hirukawa, T., & Kanazawa, S. (1995). Judgment of gender through facial parts. Perception, 24, 563–575.

    Article  PubMed  Google Scholar 

Download references

Author note

B.B. was supported by COBRE Grant No. P20 GM103505 from the National Institute for General Medical Studies (NIGMS) and NSF EPSCoR Grant No. EPS-0814442. The authors thank four anonymous reviewers for their helpful comments on earlier versions of the manuscript. The authors also thank Christopher Tonsager for his assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Balas.

Appendixes

Appendixes

Appendix 1: Target faces used in Experiments 1–3

figure a

Appendix 2: Mean percentages of accuracy for each experimental condition in Experiments 1–3

The standard errors of the means are in parentheses.

Table 1 ᅟ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, HM., Balas, B. Face features and face configurations both contribute to visual crowding. Atten Percept Psychophys 77, 508–519 (2015). https://doi.org/10.3758/s13414-014-0786-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-014-0786-0

Keywords

Navigation