Skip to main content
Log in

The role of the occipital face area in the cortical face perception network

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) studies have identified spatially distinct face-selective regions in human cortex. These regions have been linked together to form the components of a cortical network specialized for face perception but the cognitive operations performed in each region are not well understood. In this paper, we review the evidence concerning one of these face-selective regions, the occipital face area (OFA), to better understand what cognitive operations it performs in the face perception network. Neuropsychological evidence and transcranial magnetic stimulation (TMS) studies demonstrate the OFA is necessary for accurate face perception. fMRI and TMS studies investigating the functional role of the OFA suggest that it preferentially represents the parts of a face, including the eyes, nose, and mouth and that it does so at an early stage of visual perception. These studies are consistent with the hypothesis that the OFA is the first stage in a hierarchical face perception network in which the OFA represents facial components prior to subsequent processing of increasingly complex facial features in higher face-selective cortical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison T, Puce A, Spencer DD, McCarthy G (1999) Electrophysiological studies of human face perception. I: potentials generated in occipito-temporal cortex by face and non-face stimuli. Cereb Cortex 9:415–430

    Article  PubMed  CAS  Google Scholar 

  • Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267–278

    Article  PubMed  Google Scholar 

  • Barbeau EJ, Taylor MJ, Regis J, Marquis P, Chauvel P, Liegeois-Chauvel C (2008) Spatio temporal dynamics of face recognition. Cereb Cortex 18:997–1009

    Article  PubMed  Google Scholar 

  • Barton JJS (2008) Structure and function in acquired prosospagnosia: lessons from a series of ten patients with brain damage. J Neuropsychol 2:197–225

    Article  PubMed  Google Scholar 

  • Barton JJS, Press DZ, Keenan JP, O’Connor M (2002) Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 58:71–78

    PubMed  Google Scholar 

  • Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8:551–565

    Article  PubMed  Google Scholar 

  • Bouvier SE, Engel SA (2006) Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex 16:183–191

    Article  PubMed  Google Scholar 

  • Bruce V, Young A (1986) Understanding face recognition. Br J Psychol 77:305–327

    PubMed  Google Scholar 

  • Busigny T, Graf M, Mayer E, Rossion B (2010) Acquired prosopagnosia as a face-specific disorder: ruling out the general visual similarity account. Neuropsychologia 48:2051–2067

    Article  PubMed  Google Scholar 

  • Calder AJ, Young AW (2005) Understanding the recognition of facial identity and facial expression. Nat Rev Neurosci 6:641–651

    Article  PubMed  CAS  Google Scholar 

  • Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV (1996) Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 4:1–15

    Article  PubMed  CAS  Google Scholar 

  • Downing P, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473

    Article  PubMed  CAS  Google Scholar 

  • Dricot L, Sorger B, Schiltz C, Goebel R, Rossion B (2008) The roles of “face” and “non-face” areas during individual face perception: evidence by fMRI adaptation in a brain-damaged prosopagnosic patient. NeuroImage 40:318–332

    Google Scholar 

  • Eimer M (1998) Does the face-specific N170 component reflect the activity of a specialized eye processor? Neuroreport 9:2945–2948

    Article  PubMed  CAS  Google Scholar 

  • Evans J, Heggs A, Antoun N, Hodges J (1995) Progressive prosopagnosia associated with selective right temporal lobe atrophy: a new syndrome? Brain 118:1–13

    Google Scholar 

  • Fairhall SL, Ishai A (2007) Effective connectivity within the distributed cortical network for face perception. Cereb Cortex 17:2400–2406

    Article  PubMed  Google Scholar 

  • Farah MJ (2004) Visual agnosia: disorders of object recognition and what they tell us about normal vision. MIT Press, Cambridge

    Google Scholar 

  • Fox CJ, Moon S-Y, Iaria G, Barton JJS (2009) The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. Neuroimage 44:569–580

    Article  PubMed  Google Scholar 

  • Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6:316–328

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Knouf N, Kanwisher N (2004) The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci 7:555–562

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus specific effects. Trends Cogn Sci 10:14–23

    Article  PubMed  Google Scholar 

  • Harris A, Aguirre GK (2008) The representation of parts and wholes in face-selective cortex. J Cogn Neurosci 20:863–878

    Article  PubMed  Google Scholar 

  • Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL (1994) The functional organization of human extrastriate cortex: a pet-rcbf study of selective attention to faces and locations. J Neurosci 14:6336–6353

    PubMed  CAS  Google Scholar 

  • Haxby JV, Ungerleider LG, Clark VP, Schouten JL, Hoffman EA, Martin A (1999) The effect of face inversion on activity in human neural systems for face and object perception. Neuron 22:189–199

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233

    Article  PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Hemond CC, Kanwisher N, Op de Beeck HP (2007) A preference for contralateral stimuli in human object- and face-selective cortex. PLoS ONE 2(6):e574

    Article  PubMed  Google Scholar 

  • Henson RN, Goshen-Gottstein Y, Ganel T, Otten LJ, Quayle A, Rugg MD (2003) Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cereb Cortex 13:793–805

    Article  PubMed  CAS  Google Scholar 

  • Herrmann MJ, Ehlis A-C, Ellgring H, Fallgatter AJ (2005) Early stages (P100) of face perception in humans as measured with event-related potentials (ERPs). J Neural Transm 112:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3:80–84

    Article  PubMed  CAS  Google Scholar 

  • Horovitz SG, Rossion B, Skudlarski P, Gore JC (2004) Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing. Neuroimage 22:1587–1595

    Article  PubMed  Google Scholar 

  • Ishai A (2008) Let’s face it: it’s a cortical network. Neuroimage 40(2):415–419

    Article  PubMed  Google Scholar 

  • Ishai A, Haxby JV, Ungerleider LG (2002) Visual imagery of famous faces: effects of memory and attention revealed by fMRI. NeuroImage 17:1729–1741

    Article  PubMed  Google Scholar 

  • Itier RJ, Taylor MJ (2004) N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cereb Cortex 14:132–142

    Article  PubMed  Google Scholar 

  • Itier RJ, Herdman AT, George N, Cheyne D, Taylor MJ (2006) Inversion and contrast-reversal effects on face processing assessed by MEG. Brain Res 1115:108–120

    Article  PubMed  CAS  Google Scholar 

  • Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci 361:2109–2128

    Article  PubMed  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    PubMed  CAS  Google Scholar 

  • Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human fMRI studies. Neuron 37:333–346

    Article  PubMed  CAS  Google Scholar 

  • Kovács G, Cziraki C, Vidnyánszky Z, Schweinberger SR, Greenlee MW (2008) Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. Neuroimage 43:156–164

    Article  PubMed  Google Scholar 

  • Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. PNAS 104:20600–20605

    Article  PubMed  CAS  Google Scholar 

  • Large ME, Cavina-Pratesi C, Vilis T, Culham JC (2008) The neural correlates of change detection in the face perception network. Neuropsychologia 46(8):2169–2176

    Article  PubMed  Google Scholar 

  • Lerner Y, Hendler T, Ben-Nashat D, Harel M, Malach R (2001) A hierarchical axis of object processing stages in the human visual cortex. Cereb Cortex 11:287–297

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Harris A, Kanwisher N (2002) Stages of processing in face perception: an MEG study. Nat Neurosci 5:910–916

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Harris A, Kanwisher N (2010) Perception of face parts and face configurations: an fMRI study. J Cogn Neurosci 22:203–211

    Article  PubMed  Google Scholar 

  • Malach R, Reppas J, Benson R, Kwong K, Jiang H, Kennedy W, Ledden P, Brady T, Rosen B, Tootell R (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. PNAS 92:8135–8139

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Di Russo F, Anllo-Vento L, Sereno MI, Buxton RB, Hillyard SA (2001) Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vis Res 41:1437–1457

    Article  PubMed  CAS  Google Scholar 

  • McCarthy G, Puce A, Gore J, Allison T (1997) Face-specific processing in the fusiform gyrus. J Cogn Neurosci 9:605–610

    Article  Google Scholar 

  • McCarthy G, Puce A, Belger A, Allison T (1999) Electrophysiological studies of human face perception. II: response properties of face-specific potentials generated in occipitotemporal cortex. Cereb Cortex 9:431–444

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, Bettucci D, Mortara F, Mutani R, Terassi E, Davidson DL (1991) Perception and action in “visual form agnosia”. Brain 114:405–428

    Article  PubMed  Google Scholar 

  • Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Nestor A, Vettel JM, Tarr MJ (2008) Task-specific codes for face recognition: how they shape the neural representation of features for detection and individuation. Plos ONE 3:e3978

    Article  PubMed  Google Scholar 

  • Nichols DF, Betts LR, Wilson HR (2010) Decoding of faces and face components in face-sensitive human visual cortex. Front Psychol 1:28. doi:10.3389/fpsyg.2010.00028

    Google Scholar 

  • Peelen MV, Lucas N, Mayer E, Vuilleumier P (2009) Emotional attention in acquired prosopagnosia. Soc Cogn Affect Neurosci 4:268–277

    Article  PubMed  Google Scholar 

  • Pitcher D, Walsh V, Yovel G, Duchaine B (2007) TMS evidence for the involvement of the right occipital face area in early face processing. Curr Biol 17(18):1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Pitcher D, Garrido L, Walsh V, Duchaine B (2008) TMS disrupts the perception and embodiment of facial expressions. J Neurosci 28(36):8929–8933

    Article  PubMed  CAS  Google Scholar 

  • Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B (2009) Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr Biol 19(4):319–324

    Article  PubMed  CAS  Google Scholar 

  • Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215

    PubMed  CAS  Google Scholar 

  • Puce A, Allison T, McCarthy G (1999) Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb Cortex 9:445–458

    Article  PubMed  CAS  Google Scholar 

  • Ramon M, Rossion B (2010) Impaired processing of relative distances between features and of the eye region in acquired prosopagnosia—two sides of the same holistic coin? Cortex 46:374–389

    Article  PubMed  Google Scholar 

  • Ramon M, Busigny T, Rossion B (2010a) Impaired holistic processing of unfamiliar individual faces in acquired prosopagnosia. Neuropsychologia 48:933–944

    Article  PubMed  Google Scholar 

  • Ramon M, Dricot L, Rossion B (2010b) Personally familiar faces are perceived categorically in face-selective regions other than the FFA. Eur J Neurosci 32:1587–1598

    Article  PubMed  Google Scholar 

  • Rhodes G, Michie PT, Hughes ME, Byatt G (2009) FFA and OFA show sensitivity to spatial relations in faces. Eur J Neurosci 30:721–733

    Article  PubMed  Google Scholar 

  • Robertson I, Murre JMJ (1999) Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychol Bull 125:544–575

    Article  PubMed  CAS  Google Scholar 

  • Rosazza C, Cai Q, Minati l, Paulignan Y, Nazir T (2009) Early involvement of dorsal and ventral pathways in visual word recognition: an ERP study. Brain Res 1272:32–44

  • Rossion B (2008) Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage 40:423–426

    Article  PubMed  Google Scholar 

  • Rossion B, Jacques C (2008) Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. Neuroimage 39:1959–1979

    Article  PubMed  Google Scholar 

  • Rossion B, de Gelder B, Dricot L, Zoontjes R, De Volder A, Bodart J-M, Crommelinck M (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12:793–802

    Article  PubMed  CAS  Google Scholar 

  • Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395

    Article  PubMed  Google Scholar 

  • Rotshtein P, Henson RN, Treves A, Driver J, Dolan RJ (2005) Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat Neurosci 8:107–113

    Article  PubMed  CAS  Google Scholar 

  • Rotshtein P, Geng JJ, Driver J, Dolan RJ (2007) Role of features and second-order spatial relations in face discrimination, face recognition, and individual face skills: behavioral and functional magnetic resonance imaging data. J Cogn Neurosci 19:1435–1452

    Article  PubMed  Google Scholar 

  • Sadeh B, Podlipsky I, Zadanov A, Yovel G (2010) Face-selective fMRI and event-related potential responses are highly correlated: evidence from simultaneous ERP-fMRI investigation. Hum Brain Mapp 31:1490–1501

    Article  PubMed  Google Scholar 

  • Schiltz C, Rossion B (2006) Faces are represented holistically in the human occipito-temporal cortex. Neuroimage 32:1385–1394

    Article  PubMed  Google Scholar 

  • Schiltz C, Dricot L, Goebel R, Rossion B (2010) Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the composite face illusion. J Vis 10:1–16

    Article  PubMed  Google Scholar 

  • Schwarzlose RF, Swisher JD, Dang S, Kanwisher N (2008) The distribution of category and location information across object-selective regions in human visual cortex. PNAS 105:4447–4452

    Article  PubMed  CAS  Google Scholar 

  • Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. Brain 115:15–36

    Article  PubMed  Google Scholar 

  • Silvanto J, Schwarzkopf DS, Gilaie-Dotan S, Rees G (2010) Differing causal roles for lateral occipital cortex and occipital face area in invariant shape recognition. Eur J Neurosci 32:165–171

    Article  PubMed  CAS  Google Scholar 

  • Slotnick SD (2004) Source localization of ERP generators. In: Handy TC (ed) Event-related potentials: a methods handbook. MIT Press, Cambridge, pp 149–166

    Google Scholar 

  • Spiridon M, Kanwisher N (2002) How distributed is visual category information in human occipital-temporal cortex? An fMRI study. Neuron 35:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Steeves JKE, Dricot L, Goltz HC, Sorger B, Peters J, Milner AD, Goodale MA, Goebel R, Rossion B (2009) Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients. Neuropsychologia 47:2584–2592

    Article  PubMed  Google Scholar 

  • Thierry G, Martin CD, Downing PE, Pegna AJ (2007) Controlling for interstimulus perceptual variance abolishes N170 face selectivity. Nat Neurosci 10:505–511

    Article  PubMed  CAS  Google Scholar 

  • Tsao DY, Freiwald WA, Tootell RBH, Livingstone M (2006) A cortical region consisting entirely of face cells. Science 311:670–674

    Article  PubMed  CAS  Google Scholar 

  • Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. PNAS 105:19514–19519

    Article  PubMed  CAS  Google Scholar 

  • Ullman S, Vidal-Naquet M, Sali E (2002) Visual features of intermediate complexity and their use in classification. Nat Neurosci 5:682–687

    PubMed  CAS  Google Scholar 

  • Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta J, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3:79–94

    Article  PubMed  CAS  Google Scholar 

  • Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52:1559–1573

    Article  PubMed  Google Scholar 

  • Young AW, Hay DC, McWeeny KH, Ellis AW, Barry C (1985) Familiarity decisions for faces presented to the left and right cerebral hemispheres. Brain Cogn 4:439–450

    Article  PubMed  CAS  Google Scholar 

  • Young AW, Hellawell D, Hay DC (1987) Configurational information in face perception. Perception 16:747–759

    Article  PubMed  CAS  Google Scholar 

  • Yovel G, Kanwisher N (2004) Face perception: domain specific, not process specific. Neuron 44:889–898

    Google Scholar 

  • Yovel G, Kanwisher N (2005) The neural basis of the behavioral face-inversion effect. Curr Biol 15:2256–2262

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Galit Yovel and Danny Dilks for their typically perceptive comments and Marius Peelen and Boaz Sadeh for supplying figures. This work was supported by BBSRC grant BB/F022875/1 to BD and VW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pitcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitcher, D., Walsh, V. & Duchaine, B. The role of the occipital face area in the cortical face perception network. Exp Brain Res 209, 481–493 (2011). https://doi.org/10.1007/s00221-011-2579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2579-1

Keywords

Navigation