Skip to main content
Log in

On the chemical affinity tensor for chemical reactions in deformable materials

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The mass, momentum, and energy balance equations are written out for a chemical reaction localized on the reaction front in an open “deformable body-gaseous component” system to derive the entropy production equation, which naturally allows one to obtain a formula for the chemical affinity tensor. This tensor determines both the chemical equilibrium and the transformation front kinetics. The locking effect, i.e., the effect of blocking the reaction by the stresses on the front, is discussed, and the conditions on the phase interface and on the chemical reaction front are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Kramer and B. S. Kovino (Editors), AMS Handbook, Vol. 13A: Corrosion: Fundamentals, Testing, and Protection (AMS International, 2003).

    Google Scholar 

  2. S. D. Kramer and B. S. Kovino (Editors), AMS Handbook, Vol. 13C: Corrosion: Environments and Industries (AMS International, 2006).

    Google Scholar 

  3. A. M. Lokoshchenko, “Methods for Modeling the Influence of the Medium Environment on the Creep and Long-Term Strength of Metals,” UspekhiMekh. 1(4), 90–120 (2002).

    Google Scholar 

  4. V. V. Boldyrev, “Mechanochemistry and Mechanical Activation of Solids,” Uspekhi Khim. 75(3), 203–216 (2006) [Russ. Scem. Rev. (Engl. Transl.) 75 (3), 177–190 (2006)].

    Google Scholar 

  5. L. Takacs, “The Historical Development of Mechanochemistry,” Chem. Soc. Rev. RSC Pulishing 42, 7649–7659 (2013).

    Article  Google Scholar 

  6. D. Kao, J. McVitie, W. Nix, and K. Saraswat, “Two-Dimensional Thermal Oxidation of Silicon-II. Modeling Stress Effect in Wet Oxides,” IEEE Trans. Electron Dev. 35(1), 25–37 (1988).

    Article  ADS  Google Scholar 

  7. V. S. Rao and T. J. R. Hughes, “On Modeling Thermal Oxidation of Silicon. I: Theory,” Int. J. Numer. Meth. Engng 47(1–3), 341–358 (2000).

    Article  Google Scholar 

  8. H. Coffin, C. Bonafos, S. Schamm, et al., “Oxidation of Si Nanocrystals Fabricated by Ultralow-Energy Ion Implantation in Thin SiO2 Layers,” J. Appl. Phys. 99(4), 044302 (2006).

    Article  ADS  Google Scholar 

  9. J. Toribio, V. Kharin, M. Lorenzo, and D. Vergara, “Role of Drawing-Induced Residual Stresses and Strains in the Hydrogen Embrittlement Susceptibility of Prestressing Steels,” Corrosion Sci. 53(10), 3346–3356 (2011).

    Article  Google Scholar 

  10. C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, “High-Cycle Fatigue and Durability of Polycrystalline Silicon Thin Films in Ambient Air,” Sensors and Actuators A94, 177–188 (2001).

    Article  Google Scholar 

  11. C. L. Muhlstein, E. A. Stach, and R. O. Ritchie, “A Reaction-Layer Mechanism for the Delayed Failure of Micron-Scale Polycrystalline Silicon Films Subjected to High-Cycle Fatigue Loading,” Acta Mater. 50, 3579–3595 (2002).

    Article  Google Scholar 

  12. C. L. Muhlstein and R. O. Ritchie, “High-Cycle Fatigue of Micron-Scale Polycrystalline Silicon Films: Fracture Mechanics Analysis of the Role of the Silica/Silicon Interface,” Int. J. Fract. 199/120, 449–474 (2003).

    Article  Google Scholar 

  13. S. T. Kelly and B. M. Clemens, “Moving Interface Hybride Formation in Multilayered Metal Thin Films,” J. Appl. Phys. 108(1), 013521 (2010).

    Article  ADS  Google Scholar 

  14. E. S. Kikkinides, “Design and Optimization of Hydrogen Storage Units Using Advanced Solid Materials: General Mathematical Framework and Recent Developments,” Comp. Chem. Engng 35, 1923–1936 (2011).

    Article  Google Scholar 

  15. H. M. Frost, “Skeletal Structural Adaptations to Mechanical Usage (SATMU): 3. The Hyaline Cartilage Modeling Problem,” Anat. Rec. 266(4), 423–432 (1990).

    Article  Google Scholar 

  16. L. A. Taber, “Biomechanics of Growth, Remodeling and Morphogenesis,” Appl. Mech. Rev. 48(8), 487–545 (1995).

    Article  ADS  Google Scholar 

  17. J.W. Gibbs, Thermodynamics. Statistical Mechanics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  18. Th. De Donder and P. van Rysselberghe, Thermodynamic Theory of Affinity. A Book of Principles (Stanford University Press, Stanford, 1936; Metallurgiya, Moscow, 1984).

    Google Scholar 

  19. I. Prigogine and R. Defay, Chemical Thermodynamics (Longman, London-New York, 1962; Nauka, Novosibirsk, 1966).

    Google Scholar 

  20. A. I. Rusanov, Thermodynamical Foundations of Mechanochemistry (Nauka, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  21. M. A. Grinfeld, “On Conditions of Thermodynamic Equilibrium of Phases of a Nonlinearly Elastic Material,” Dokl. Akad. Nauk SSSR 251(4), 824–827 (1980) [Soviet Math. Dokl. (Engl. Transl.)].

    Google Scholar 

  22. R. D. James, “Finite Deformations by Mechanical Twinning,” Arch. Rat. Mech. Anal. 77(2), 143–177 (1981).

    Article  Google Scholar 

  23. M. E. Gurtin, “Two-Phase Deformations of Elastic Solids,” Arch. Rat. Mech. Anal. 84(1), 1–29 (1983).

    Article  MathSciNet  Google Scholar 

  24. M. A. Grinfeld, Methods of Continuum Mechanics in Theory of Phase Transformations (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  25. J.D. Eshelby, “Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics,” in Inelastic Behavior of Solids, Ed. by M. Kanninen et al. (McGraw-Hill, New York, 1970), pp. 77–115.

    Google Scholar 

  26. J. D. Eshelby, “The Elastic Energy-Momentum Tensor,” J. Elasticity 5(4), 321–335 (1975).

    Article  MathSciNet  Google Scholar 

  27. K. Markenscoff and A. Gupta (Editors), “Collected Works of J. D. Eshelby. The Mechanics of Defects and Inhomogeneities,” in Solid Mechanics and Its Applications, Vol. 133 (Springer, 2006).

  28. J. K. Knowles, “On the Dissipation Associated with Equilibrium Shocks in Finite Elasticity,” J. Elasticity 9(2), 131–158 (1979).

    Article  MathSciNet  Google Scholar 

  29. R. Abeyaratne and J. K. Knowles, Evolution of Phase Transition. A Continuum Theory (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  30. R. M. Bowen, “Towards a Thermodynamics and Mechanics of Mixtures,” Arch. Rat. Mech. Anal. 24(5), 370–403 (1967).

    Article  MathSciNet  Google Scholar 

  31. C. Truesdell, Rational Thermodynamics (McGraw-Hill, London, 1969).

    Google Scholar 

  32. A. I. Rusanov, “Surface Thermodynamics Revisited,” Surface Sci. Rep. 58, 111–239 (2005).

    Article  ADS  Google Scholar 

  33. A. B. Freidin, “On Chemical Reaction Fronts in Nonlinear Elastic Solids,” in Proc. 36th Int. Summer School Conf. “Advanced Problems in Mechanics (APM2009)”, Ed. by D. A. Indeitsev and A.M. Krivtsov (St. Petersburg Inst. for Probl. inMech. Engng, 2009), pp. 213–237.

    Google Scholar 

  34. A. B. Freidin, “Chemical Affinity Tensor and Stress-Assist Chemical Reactions Front Propagation in Solids,” in ASME 2013 Int. Mech. Engng Congr. and Exposition, Vol. 9:Mechanics of Solids, Structures and Fluids, San Diego, California, USA, 2013, Paper No. IMECE2013-64957, p. V009T10A102.

  35. A. B. Freidin, E. N. Vilchevskaya, and I. Korolev, “Stress-Assist Chemical Reactions Front Propagation in Deformable Solids,” Int. J. Engng Sci. 83, 57–75 (2014).

    Article  MathSciNet  Google Scholar 

  36. V. I. Levitas, “Structural Changes without Stable Intermediate State in Inelastic Material. P. I. General Thermomechanical and Kinetic Approaches,” Int. J. Plasticity 16(7), 805–849 (2000).

    Article  Google Scholar 

  37. K. Loeffel and L. Anand, “A Chemo-Thermo-Mechanically Coupled Theory for Elastic-Viscoelastic Deformation, Diffusion, and Volumetric Swelling due to a Chemical Reaction,” Int. J. Plasticity 27(9), 1409–1431 (2011).

    Article  Google Scholar 

  38. K. Loeffel, L. Anand, and Z. Gasem, “On Modeling the Oxidation of High-Temperature Alloys,” Acta Mater. 61(2), 399–424 (2013).

    Article  Google Scholar 

  39. P. Cermelli and M. E. Gurtin, “On the Kinematics of Incoherent Phase Transitions,” Act. Metal. Mater. 41(10), 3349–3359 (1994).

    Article  Google Scholar 

  40. P. Cermelli and M. E. Gurtin, “The Dynamics of Solid-Solid Phase Transitions. 2. Incoherent Interfaces,” Arch. Rat. Mech. Anal. 127, 41–99 (1994).

    Article  MathSciNet  Google Scholar 

  41. E. H. Lee, “Elastic-Plstic Deformation at Finite Strains,” Trans. ASME. J. Appl. Mech. 36(1), 1–6 (1969).

    Article  ADS  Google Scholar 

  42. M. Epstein and G. A. Maugin, “Thermomechanics of Volumetric Growth in Uniform Bodies,” Int. J. Plasticity 16(7–8), 951–978 (2000).

    Article  Google Scholar 

  43. V. A. Lubarda, “Constitutive Theories Based on the Multiplicative Decomposition of Deformation Gradient: Thermoelasticity, Elastoplaticity, and Biomechanics,” Appl. Mech. Rev. 57(2), 95–108 (2004).

    Article  ADS  Google Scholar 

  44. A. Gillou and R. W. Ogden, Growth in Soft Biological Tissue and Residual Stress Development in Mechanics of Biological Tissue, Ed. by G. A. Holzapfel and R.W. Ogden (Springer, Heidelberg, 2006).

    Google Scholar 

  45. A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  46. C. Truesdell, A First Course in Rational Continuum Mechanics (The Johns Hopkins University Press, Baltimore, Maryland, 1972; Mir, Moscow, 1975).

    Google Scholar 

  47. K. Wilmanski, Thermomechanics of Continua (Springer, Berlin, 1998).

    Book  Google Scholar 

  48. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations (Wiley-Interscience, New York, 1971; Mir, Moscow, 1973).

    Google Scholar 

  49. E. N. Vilchevskaya and A. B. Freidin, “Modeling Mechanochemistry of the Diffusion Controlled Chemical Reaction Front Propagation in Elastic Solids,” in Proc. 38th Int. Summer School Conf. “Advanced Problems in Mechanics (APM 2010)”, Ed. by D. A. Indeitsev and A. M. Krivtsov (St. Petersburg Inst. for Probl. in Mech. Engng, 2010), pp. 741–749.

    Google Scholar 

  50. E. N. Vilchevskaya and A. B. Freidin, “On Kinetics of Chemical Reaction Fronts in Elastic Solids,” in Advanced Structures Materials, Vol. 30: Surface Effects in Solid Mechanics, Ed. by H. Altenbach and N. F. Morozov (Springer, Berlin-Heidelberg, 2013), pp. 105–117.

    Google Scholar 

  51. G. A. Maugin, Material Inhomogeneities in Elasticity (Chapman and Hall, London, 1993).

    Book  Google Scholar 

  52. R. Kienzler and G. Herran, Mechanics in Material Space with Application to Defect and Fracture Mechanics (Springer, Berlin, 2000).

    Google Scholar 

  53. M. E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics (Springer, New York, 2000).

    Google Scholar 

  54. L. B. Kublanov and A. B. Freidin, “Solid Phase Seeds in a Deformable Material,” Prikl. Mat. Mekh. 52(3), 493–501 (1988) [J. Appl.Math. Mech. (Engl. Transl.) 52 (3), 382–389 (1988)].

    MathSciNet  Google Scholar 

  55. A. B. Freidin, “Crazing and Shear Bands in Glassy Polymers as Layers of a New Phase,” Mekh. Komp. Mater., No. 1, 3–10 (1989) [Mech. Comp. Mater. (Engl. Transl.) 25 (1), 1–7 (1989)].

    Google Scholar 

  56. N. F. Morozov, I. R. Nazyrov, and A. B. Freidin, “One-Dimensional Problem of the Phase Transformation of an Elastic Sphere,” Dokl. Ross. Akad. Nauk 346(2), 188–191 (1996) [Dokl. Phys. (Engl. Transl.) 41 (1), 40–43 (1996)].

    MathSciNet  Google Scholar 

  57. N. F. Morozov and A. B. Freidin, “Zones of Phase Transitions and Phase Transformations in Elastic Bodies under Various Stress States,” Trudy Mat. Inst. Steklov 223, 220–232 (1998) [Proc. Steklov Inst. Math. (Engl. Transl.) 223, 219–232 (1998)].

    MathSciNet  Google Scholar 

  58. A. B. Freidin, “Small-Strain Approximation in the Theory of Phase Transitions of Elastic Bodies under Deformation,” in Strength and Fracture of Materials and Structures. Intervuz. Collection of Papers, Vol. 18: Studies in Elasticity and Plasticity, Ed. by N. F. Morozov (Izd-vo St. Petersburg Univ., St. Petersburg, 1999), pp. 266–290 [in Russian].

    Google Scholar 

  59. A. B. Freidin, “On New Phase Inclusions in Elastic Solids,” ZAMM 87(2), 102–116 (2007).

    Article  MathSciNet  Google Scholar 

  60. A. B. Freidin, Fracture Mechanics. Eshelby Problem (Izdat. Politekh. Univ., St. Petersburg, 2010) [in Russian].

    Google Scholar 

  61. P. Sutardja and W. Oldham, “Modeling of Stress Effects in Silicon Oxidation,” IEEE Trans. Electron Dev. 36(11), 2415–2421 (1988).

    Article  ADS  Google Scholar 

  62. A. Huntz, G. C. Amiri, H. Evans, and G. Cailletaud, “Comparison of Oxidation-Growth Stresses in NiO Film Measured by Deflection and Calculated Using Creep Analysis or Finite-Element Modeling,” Oxidation of Metals 57(5), 499–521 (2002).

    Article  Google Scholar 

  63. V. Levitas and H. Attariani, “Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor,” Scient. Rep., 3, 1615 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Freidin.

Additional information

Original Russian Text © A.B. Freidin, 2015, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2015, No. 3, pp. 35–68.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freidin, A.B. On the chemical affinity tensor for chemical reactions in deformable materials. Mech. Solids 50, 260–285 (2015). https://doi.org/10.3103/S0025654415030048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654415030048

Keywords

Navigation